
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2633

Survey on Simulation of Self-Driving Cars using Supervised and

Reinforcement Learning Models

Athul Dev1, Roshni K S2

1 Student, Department of Computer Science & Engineering, Nitte Meenakshi Institute of Technology, India
2 Student, Dept. of Electrical & Electronics Engineering, Sir. M Vishveshvaraya Institute of Technology, India

---***---

Abstract - A self-driving system is the heart, soul and future of

the automobile industry and there is a lot of techniques and

technology involved in the accomplishment of a self-driving

car. Since the system has to be deployed in the real world and

which is supposed to take multiple actions and sudden

reactions in real time, the system should be tuned to a very

high degree of precision. In this paper we share our

observations with respect to tuning and tweaking most of the

hyper parameters and the architecture in a generated

environment for both supervised and reinforcement learning

techniques. And how different a supervised learning model is

to a reinforcement learning model with respect to the self-

driving car. We use the concepts of Deep Learning, Deep

Neural Networks, Convolutional Networks and Deep Q

learning in order to configure the brain of our car to perform

certain actions.

Key Words: Machine Learning, Supervised Learning,

Reinforcement Learning, Q Learning, Convolutional

Neural Networks, Deep Learning, Markov Decision

Process.

1.INTRODUCTION

From the perspective of a self-driving car, we have mainly

considered the motion, the movement and the overall

physics of the car. In the supervised model we have made the

prediction of the car’s position, its steering angle and the

speed of the car in the environment based on how we drove

the car in that particular environment, so on the basis of

certain frames of images encountered, the required steering

angle and speed in fed back to the car as it’s input. That is

image is the input and the steering angle with the speed,

throttle and brake is the output. So in this case we are not

considering any sorts of external obstacles like another

vehicle, a barricade and so on. Whereas in the reinforcement

model we have considered the obstacles by giving it a

negative reward when it encounters and obstacles or

barriers, due to which it tends to avoid these obstacles. We

have tuned various hyper parameters like the learning rate,

living penalty, rewards, the activation functions and the

network architecture. And the testing for both is done for

various time intervals with its related accuracy value.

The combination of the environments or the learning

techniques can be made possible which is the future scope of

this paper.

2. SUPERVISED LEARNING MODEL

Supervised Learning is the machine learning task of learning

a function that maps an input to an output based on example

input-output pairs. It infers a function from labeled training

data consisting of a set of training examples.

In this case the images recorded from the car when ridden is

the input data and the steering angle is the target label. And

this supervised model in general is a technique that was

implemented by the [1]NVIDIA’s End-to-End Deep Learning

for Self-Driving Cars. We have used the concept and

modelled a system with different activation functions and

different convolutional layers.

2.1 Implementation

The implementation is done in three main stages/phases:

a. Data Generation Phase

b. Training Phase

c. Testing Phase

2.1.1 Data Generation Phase

For the data generation part, where the data collected here is

the images from the camera(s), which is nothing but the road

that the car sees to its front and various physics variables

like its speed, throttle, brake and steering. In order to get the

data and for the environment we have used Udacity’s open

source version of the car simulator which comes with two

pre-loaded environments and an efficient way to train and

test the model.

In order to generate the data we select the training mode of

the open source simulator which brings up a car with three

camera’s mounted on it, towards the left, right and center of

the car. So we start moving the car with the keyboard inputs

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2634

or with a joystick for smother transitions, we can now record

this movement of the car which is controlled by us (a human

driver) and this action will be mimicked by our model in the

form of mapping images to actions.

This data can then be saved into a comma separated value

file, which has the images from the camera’s pointing to left,

right and center of the car with the image’s absolute path,

the speed, throttle, brake and the steering values

2.1.2 Training Phase

The training process is inspired by the [1] NVIDIA’s End-to-

End Deep Learning for Self-Driving Cars, they have made use

of an actual car fitted with three cameras on its left, right and

center and had a human driver drive the car for 72hrs,

recording the images from the cameras along with the car’s

speed, throttle, brake and the steering angle values.

We have mimicked the above process using the Udacity’s

open source version of the car simulator, by making a user

(human driver) drive the car in the simulator using a

keyboard for various laps and different intervals of time. And

have recorded it with respect to the number of laps and

various time intervals which is shown in the Table 1.

Table -1: Accuracy with respect to the no. of laps.

Number of Laps Time taken to

train the model

Accuracy of the

model

1 15mins 20%

3 50mins 45%

5 3hrs 70%

10 8hrs 85%

In the model, we have used Keras for our deep learning

framework with a sequential model. We start with doing

image normalization and adding a 10 layer convolutional

network layer with 5 fully connected layers to flatten the

data. We have tried the model using various activation

functions like the sigmoid activation function, rectified linear

activation function and the exponential linear unit activation

function, and found exponential linear unit the best activation

function for this scenario as it takes care of the vanishing

gradient problem.

Table -2: Accuracy with respect to the activation functions

Activation Function Accuracy of the model

Sigmoid 70-85%

Rectified Linear Unit 80-90%

Exponential Linear Unit 85-95%

 Now since the setup is ready, we try to find the data loss or

the error that is by finding the difference between the

predicted steering command and the actual steering

command from the training data. Once we determine the

mean of sum of squared error, that is then back propagated to

the convolutional neural network which in turn produces a

network computed steering value. And for optimization we

have used Adam optimizer that does our Gradient decent

function.

2.1.3 Testing Phase

A server-client structure is used for the testing, where the

server is the open source simulator and the client, our

python program.

Various dependencies and libraries like socketio which helps

us work in terms of piping commands in real time using

event handlers, Pillow for image manipulation and flask

which is a web framework.

For testing, we start our simulator and then pass the model

that was trained in the training phase to our testing script

and simultaneously activate the autonomous mode in the

simulator to which the program connects and outputs the

required steering angle, speed, throttle and brake values to

the autonomous car.

Here the prediction of the steering angle with respect to the

image from the cameras is sent to the server and Thus giving

us a self-driving car in a simulated environment.

Fig -1: Testing the model

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2635

3. REINFORCEMENT LEARNING MODEL

Reinforcement learning is a type of Machine Learning

algorithms which allows software agents and machines to

automatically determine the ideal behavior within a specific

context, to maximize its performance.

Reinforcement algorithms are not given explicit goals;

instead, they are forced to learn these optimal goals by trial

and error.

Here we are making use of the sole concepts of reinforcement

learning like the Bellman Equation, Markov Decision Process,

and Q Learning which is the base for Deep Q Learning

Networks.

3.1 Concepts

3.1.1 Bellman Equation

Say we have a state s, an action taken by the agent as a, the

reward R which the agent gets once it gets into a particular

state and Ὑ (gamma) the discount.

The bellman equation assigns a value to a state by getting the

maximum of all the actions possible with respect to the sum

of the rewards that the agent gets in the current state for a

certain action and the value of the following state or the state

that the agent would end up in from the current state.

3.1.2 Markov Decision Process

The Markov Decision Process takes care of the non-

deterministic search problem. That is the agent is bound the

take any action in order to find its optimal policy or path and

the actions it might take may not be in a deterministic way,

thus we have a probability term that is multiplied to the

value of the following state.

3.1.3 Living Penalty

Generally an agent gets a reward say in our case a positive

reward when it reaches its destinations and a negative

reward when it goes off road, but a living penalty is a reward

that is given to an agent throughout in its exploration phase

so as to generally find an optimal path. The policy or the

mapping changes with respect to the living penalty value

that is assigned to the agent in its environment.

3.1.4 Q Learning

Q-learning is a simple way for agents to learn how to act

optimally in controlled Markovian domains. It amounts to an

incremental method for dynamic programming which

imposes limited computational demands. It works by

successively improving its evaluations of the quality of

particular actions at particular states.

The value of the states are replaced by the Q functions or

rather the Quality factor of the action in the respective

states.

3.2 Design and Environment

We have made use of Kivy which is an open source Python

library for development of our self-driving car interface or

the environment and for the mapping purposes.

In the environment we have a car that goes from one

destination to another, where in this case the destinations are

predefined. As it moves it is encounters to many barriers and

the car overcomes or surpasses these barriers and continue

its route using the idea of Deep Q learning or in general

Reinforcement learning technique(s).

The user is allowed to place or insert the barriers in the

course of the car and the car surpasses these barriers in real

time with minimal fault and training. The learning, with

respect to this scenario is very fast as compared to the

previously mentioned supervised learning model.

The possible actions that the car can take here is move left,

right or straight. And the angle of the rotation to its left or

right is specified as 10. The car is equipped with three

sensors which are to its left, right and center and these

sensors detect the barriers and avoids them by taking the

opposite direction of the sensor that detects the barriers.

We also configure the rewards that the car gets when it hits

the barrier as -1 which is the worst reward, the living penalty

reward as -0.4, if it reaches its optimal path that is a path

better than the previous one in terms of the distance taken it

gets a reward of 0.2, a reward of -1 if it hits the environment

window or the limit and a reward of 1 if it reaches its

destination.

3.3 Implementation

In the reinforcement learning there is no need of explicit

data generation because the data is obtained as the agent is

exploring, and the training and testing happens

simultaneously.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2636

We are extensively using PyTorch deep learning framework

for creating the neural network architecture. The neural

network architecture is comprising of 2 fully connected

layers in a linear manner with 30 nodes in the hidden layer,

the first fully connected layer is with input and the hidden

layer and the next is between the hidden layer and the

number of actions the car can take.

Next we start building the feed forward network, for this we

apply an activation function to our first fully connected layer

and generate the Q values by passing the output of the

activation function to the second fully connected layer. And

return the Q values. This architecture can be improved by

tweaking the number of nodes in the hidden layers and using

different activation functions.

Then we continue to implement an experience reply for the

agent as the Markov Decision process or the Q learning

algorithm works with respect to analyzing a series of events

and the consecutive states, that is the current state and the

following state. The correlation among these states are more

and the network will not be learning very well. So in order to

avoid this we use experience reply which considers say

about 100-1000 states and keeps them in the memory as the

series of events so that an efficient decision can be taken by

the agent and these bulk states are treated in various

batches.

Finally we build our Deep Q learning model by passing

various hyper parameters like the discount factor (Gamma),

the model itself from the neural network architecture, the

reply memory and the optimizer to do stochastic gradient

decent where in this case an Adam Optimizer is used with

the learning rate of 0.005 which gave the best result. We also

determine the right action for the car to take that is whether

to go left, right or straight using a softmax layer. Softmax

gives a large probability to highest Q value. Softmax also

takes care of the exploration of the environment by the agent

really well. The learning is done in batches with respect to

the reply memory technique. While learning we consider the

maximum of the Q values of the next state as well as the

reward obtained in the current state. We then calculate the

loss using the smooth l1 loss (Huber loss - since it improves

the Q learning) and pass the loss error to the optimizer to do

the stochastic gradient decent and update the weights using

the back propagation. Eventually an update is done with

respect to the action and the state when the agent gets into a

new state and a connection is made between the brain (the

DQN logic) and the map function which is defined earlier in

the section 3.2 Design and Environment.

3.4 Training and Testing

The training and testing can be visualized once we run the

environment and the car, since the Deep Q Network (DNQ)

logic is linked to the mapping part we need not explicitly

pass any arguments to link them at the time of execution.

The car starts exploring the environment for some time and

once it reaches its destination it gets a positive reward and it

looks for its next destination checkpoint and continues to get

positive reward from reaching checkpoints and finds an

optimal path to do the same. But when we start placing

barriers in the environment and when the car encounters

these barriers it receives a negative reward, so in its next

encounter it evades the barrier and becomes much efficient

to its previous transition.

The best part about this system is that the barriers or the

obstacles can be randomly anytime and anywhere on the

environment and the car or the agent avoids or evades these

barriers in real time.

Fig -2: Bird’s view of the environment

Thus, the agent updates the rewards and the scores

continuously and takes the next actions with respect to these

updated rewards, scores and the Q values.

This gives rise to a self-driving car using the reinforcement

learning technique.

Chart -1: Behavior with respect to the time and the reward

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2637

4. SUPERVISED V/S REINFORCEMENT MODEL

In the supervised learning model the mapping between the

images to the car’s attributes like speed, steering angle,

throttle and brake is done, so whenever the car/ model gets

a new image it will act accordingly whereas in reinforcement

learning model the car explores the environment at first for

some time as a part of training and with respect to the

rewards it gets, it moves in the environment taking various

decisions like going left, right or straight.

Supervised learning model needs a lot of data and

predefined training for a long time only then it can be

implement accurately whereas reinforcement learning

adapts quickly with less training and data.

Reinforcement learning model in this scenario can easily

evade or surpass any obstacle thrown to it by the user

anytime, anywhere whereas the supervised learning model

fails to do so.

Supervised learning model can easily facilitate a large

number of features and a high accuracy can be obtained but

we will have to use a powerful enough computer that run on

multiple graphics processing unit(s).

5. CONCLUSIONS

In this paper we have given an overview of the two different

models that is the supervised learning model and the

reinforcement learning model with respect to a self-driving

car. And how each model behaves when the hyper

parameters are tweaked, variations in the activation

functions is made and how long the model is trained.

The model can be furthered improvised by changing the

environments and the architecture, and the implementation

in general can be improved by combining the learning

models and further tweaking the hyper parameters or

adding more layers to the architecture.

ACKNOWLEDGEMENT

We thank our family and friends for their priceless support

and encouragement.

REFERENCES

[1] NVIDIA’s End-to-End Deep Learning for Self-Driving

Cars.

[2] The Theory of Dynamic Programming By Richard

Bellman (1954)

[3] Markov Decision Processes: Concepts and Algorithms By

Martijn van Otterlo (2009)

[4] Learning to Predict by the Methods of Temporal

Differences BY Richard Sutton (1988)

[5] Reinforcement Learning I: Introduction By Richard

Sutton.

[6] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. R.

Howard, W. Hubbard and L. D. Jackel. Backprop-agation

applied to handwritten zip code recognition.

BIOGRAPHIES

 Athul Dev

Machine Learning and Data Science

enthusiast.

Experiences: Software Developer

Intern at Power Grid Corporation of

India, Machine Learning Intern at

Latent Talent Technologies and Curl

Analytics, Data Analyst Intern at CHR

Solutions. Interested in Big Data

Analytics, AI, ML and web

development.

 Roshni K S

IoT, embedded systems,

microcontrollers, matlab and computer

programming enthusiast.

Experiences: Software Developer

Intern at Power Grid Corporation of

India, Power System Analyst Intern at

KPTCL.

