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Abstract - A self-driving system is the heart, soul and future of 

the automobile industry and there is a lot of techniques and 

technology involved in the accomplishment of a self-driving 

car. Since the system has to be deployed in the real world and 

which is supposed to take multiple actions and sudden 

reactions in real time, the system should be tuned to a very 

high degree of precision. In this paper we share our 

observations with respect to tuning and tweaking most of the 

hyper parameters and the architecture in a generated 

environment for both supervised and reinforcement learning 

techniques. And how different a supervised learning model is 

to a reinforcement learning model with respect to the self-

driving car. We use the concepts of Deep Learning, Deep 

Neural Networks, Convolutional Networks and Deep Q 

learning in order to configure the brain of our car to perform 

certain actions. 
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1.INTRODUCTION  

 

From the perspective of a self-driving car, we have mainly 

considered the motion, the movement and the overall 

physics of the car. In the supervised model we have made the 

prediction of the car’s position, its steering angle and the 

speed of the car in the environment based on how we drove 

the car in that particular environment, so on the basis of 

certain frames of images encountered, the required steering 

angle and speed in fed back to the car as it’s input. That is 

image is the input and the steering angle with the speed, 

throttle and brake is the output. So in this case we are not 

considering any sorts of external obstacles like another 

vehicle, a barricade and so on. Whereas in the reinforcement 

model we have considered the obstacles by giving it a 

negative reward when it encounters and obstacles or 

barriers, due to which it tends to avoid these obstacles. We 

have tuned various hyper parameters like the learning rate, 

living penalty, rewards, the activation functions and the 

network architecture. And the testing for both is done for 

various time intervals with its related accuracy value. 

The combination of the environments or the learning 

techniques can be made possible which is the future scope of 

this paper.  

2. SUPERVISED LEARNING MODEL 

 

Supervised Learning is the machine learning task of learning 

a function that maps an input to an output based on example 

input-output pairs. It infers a function from labeled training 

data consisting of a set of training examples. 

In this case the images recorded from the car when ridden is 

the input data and the steering angle is the target label. And 

this supervised model in general is a technique that was 

implemented by the [1]NVIDIA’s End-to-End Deep Learning 

for Self-Driving Cars. We have used the concept and 

modelled a system with different activation functions and 

different convolutional layers. 

2.1 Implementation 

The implementation is done in three main stages/phases: 

a. Data Generation Phase 

b. Training Phase 

c. Testing Phase 

2.1.1 Data Generation Phase 

For the data generation part, where the data collected here is 

the images from the camera(s), which is nothing but the road 

that the car sees to its front and various physics variables 

like its speed, throttle, brake and steering. In order to get the 

data and for the environment we have used Udacity’s open 

source version of the car simulator which comes with two 

pre-loaded environments and an efficient way to train and 

test the model. 

In order to generate the data we select the training mode of 

the open source simulator which brings up a car with three 

camera’s mounted on it, towards the left, right and center of 

the car. So we start moving the car with the keyboard inputs 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 06 | June 2018                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |      Page 2634 
 

or with a joystick for smother transitions, we can now record 

this movement of the car which is controlled by us (a human 

driver) and this action will be mimicked by our model in the 

form of mapping images to actions. 

This data can then be saved into a comma separated value 

file, which has the images from the camera’s pointing to left, 

right and center of the car with the image’s absolute path, 

the speed, throttle, brake and the steering values 

2.1.2 Training Phase 

The training process is inspired by the [1] NVIDIA’s End-to-

End Deep Learning for Self-Driving Cars, they have made use 

of an actual car fitted with three cameras on its left, right and 

center and had a human driver drive the car for 72hrs, 

recording the images from the cameras along with the car’s 

speed, throttle, brake and the steering angle values. 

We have mimicked the above process using the Udacity’s 

open source version of the car simulator, by making a user 

(human driver) drive the car in the simulator using a 

keyboard for various laps and different intervals of time. And 

have recorded it with respect to the number of laps and 

various time intervals which is shown in the Table 1. 

Table -1: Accuracy with respect to the no. of laps. 

Number of Laps Time taken to 

train the model 

Accuracy of the 

model 

1 15mins 20% 

3 50mins 45% 

5 3hrs 70% 

10 8hrs 85% 

 

In the model, we have used Keras for our deep learning 

framework with a sequential model. We start with doing 

image normalization and adding a 10 layer convolutional 

network layer with 5 fully connected layers to flatten the 

data. We have tried the model using various activation 

functions like the sigmoid activation function, rectified linear 

activation function and the exponential linear unit activation 

function, and found exponential linear unit the best activation 

function for this scenario as it takes care of the vanishing 

gradient problem. 

 

 

 

Table -2: Accuracy with respect to the activation functions 

Activation Function Accuracy of the model 

Sigmoid 70-85% 

Rectified Linear Unit 80-90% 

Exponential Linear Unit 85-95% 

 

 Now since the setup is ready, we try to find the data loss or 

the error that is by finding the difference between the 

predicted steering command and the actual steering 

command from the training data. Once we determine the 

mean of sum of squared error, that is then back propagated to 

the convolutional neural network which in turn produces a 

network computed steering value. And for optimization we 

have used Adam optimizer that does our Gradient decent 

function. 

2.1.3 Testing Phase  

A server-client structure is used for the testing, where the 

server is the open source simulator and the client, our 

python program. 

Various dependencies and libraries like socketio which helps 

us work in terms of piping commands in real time using 

event handlers, Pillow for image manipulation and flask 

which is a web framework. 

For testing, we start our simulator and then pass the model 

that was trained in the training phase to our testing script 

and simultaneously activate the autonomous mode in the 

simulator to which the program connects and outputs the 

required steering angle, speed, throttle and brake values to 

the autonomous car. 

Here the prediction of the steering angle with respect to the 

image from the cameras is sent to the server and Thus giving 

us a self-driving car in a simulated environment. 

 

Fig -1: Testing the model 
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3. REINFORCEMENT LEARNING MODEL 

Reinforcement learning is a type of Machine Learning 

algorithms which allows software agents and machines to 

automatically determine the ideal behavior within a specific 

context, to maximize its performance. 

Reinforcement algorithms are not given explicit goals; 

instead, they are forced to learn these optimal goals by trial 

and error. 

Here we are making use of the sole concepts of reinforcement 

learning like the Bellman Equation, Markov Decision Process, 

and Q Learning which is the base for Deep Q Learning 

Networks. 

3.1 Concepts 

3.1.1 Bellman Equation 

Say we have a state s, an action taken by the agent as a, the 

reward R which the agent gets once it gets into a particular 

state and Ὑ (gamma) the discount. 

 

The bellman equation assigns a value to a state by getting the 

maximum of all the actions possible with respect to the sum 

of the rewards that the agent gets in the current state for a 

certain action and the value of the following state or the state 

that the agent would end up in from the current state. 

3.1.2 Markov Decision Process 

The Markov Decision Process takes care of the non-

deterministic search problem. That is the agent is bound the 

take any action in order to find its optimal policy or path and 

the actions it might take may not be in a deterministic way, 

thus we have a probability term that is multiplied to the 

value of the following state. 

 

3.1.3 Living Penalty 

Generally an agent gets a reward say in our case a positive 

reward when it reaches its destinations and a negative 

reward when it goes off road, but a living penalty is a reward 

that is given to an agent throughout in its exploration phase 

so as to generally find an optimal path. The policy or the 

mapping changes with respect to the living penalty value 

that is assigned to the agent in its environment. 

3.1.4 Q Learning 

Q-learning is a simple way for agents to learn how to act 

optimally in controlled Markovian domains. It amounts to an 

incremental method for dynamic programming which 

imposes limited computational demands. It works by 

successively improving its evaluations of the quality of 

particular actions at particular states.  

The value of the states are replaced by the Q functions or 

rather the Quality factor of the action in the respective 

states.

 

3.2 Design and Environment 

We have made use of Kivy which is an open source Python 

library for development of our self-driving car interface or 

the environment and for the mapping purposes. 

In the environment we have a car that goes from one 

destination to another, where in this case the destinations are 

predefined. As it moves it is encounters to many barriers and 

the car overcomes or surpasses these barriers and continue 

its route using the idea of Deep Q learning or in general 

Reinforcement learning technique(s). 

The user is allowed to place or insert the barriers in the 

course of the car and the car surpasses these barriers in real 

time with minimal fault and training. The learning, with 

respect to this scenario is very fast as compared to the 

previously mentioned supervised learning model. 

The possible actions that the car can take here is move left, 

right or straight. And the angle of the rotation to its left or 

right is specified as 10. The car is equipped with three 

sensors which are to its left, right and center and these 

sensors detect the barriers and avoids them by taking the 

opposite direction of the sensor that detects the barriers. 

We also configure the rewards that the car gets when it hits 

the barrier as -1 which is the worst reward, the living penalty 

reward as -0.4, if it reaches its optimal path that is a path 

better than the previous one in terms of the distance taken it 

gets a reward of 0.2, a reward of -1 if it hits the environment 

window or the limit and a reward of 1 if it reaches its 

destination. 

3.3 Implementation 

In the reinforcement learning there is no need of explicit 

data generation because the data is obtained as the agent is 

exploring, and the training and testing happens 

simultaneously. 
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We are extensively using PyTorch deep learning framework 

for creating the neural network architecture. The neural 

network architecture is comprising of 2 fully connected 

layers in a linear manner with 30 nodes in the hidden layer, 

the first fully connected layer is with input and the hidden 

layer and the next is between the hidden layer and the 

number of actions the car can take. 

Next we start building the feed forward network, for this we 

apply an activation function to our first fully connected layer 

and generate the Q values by passing the output of the 

activation function to the second fully connected layer. And 

return the Q values. This architecture can be improved by 

tweaking the number of nodes in the hidden layers and using 

different activation functions. 

Then we continue to implement an experience reply for the 

agent as the Markov Decision process or the Q learning 

algorithm works with respect to analyzing a series of events 

and the consecutive states, that is the current state and the 

following state. The correlation among these states are more 

and the network will not be learning very well. So in order to 

avoid this we use experience reply which considers say 

about 100-1000 states and keeps them in the memory as the 

series of events so that an efficient decision can be taken by 

the agent and these bulk states are treated in various 

batches.  

Finally we build our Deep Q learning model by passing 

various hyper parameters like the discount factor (Gamma), 

the model itself from the neural network architecture, the 

reply memory and the optimizer to do stochastic gradient 

decent where in this case an Adam Optimizer is used with 

the learning rate of 0.005 which gave the best result. We also 

determine the right action for the car to take that is whether 

to go left, right or straight using a softmax layer. Softmax 

gives a large probability to highest Q value. Softmax also 

takes care of the exploration of the environment by the agent 

really well. The learning is done in batches with respect to 

the reply memory technique. While learning we consider the 

maximum of the Q values of the next state as well as the 

reward obtained in the current state. We then calculate the 

loss using the smooth l1 loss (Huber loss - since it improves 

the Q learning) and pass the loss error to the optimizer to do 

the stochastic gradient decent and update the weights using 

the back propagation. Eventually an update is done with 

respect to the action and the state when the agent gets into a 

new state and a connection is made between the brain (the 

DQN logic) and the map function which is defined earlier in 

the section 3.2 Design and Environment. 

 

3.4 Training and Testing 

The training and testing can be visualized once we run the 

environment and the car, since the Deep Q Network (DNQ) 

logic is linked to the mapping part we need not explicitly 

pass any arguments to link them at the time of execution. 

The car starts exploring the environment for some time and 

once it reaches its destination it gets a positive reward and it 

looks for its next destination checkpoint and continues to get 

positive reward from reaching checkpoints and finds an 

optimal path to do the same. But when we start placing 

barriers in the environment and when the car encounters 

these barriers it receives a negative reward, so in its next 

encounter it evades the barrier and becomes much efficient 

to its previous transition. 

The best part about this system is that the barriers or the 

obstacles can be randomly anytime and anywhere on the 

environment and the car or the agent avoids or evades these 

barriers in real time. 

 

Fig -2: Bird’s view of the environment 

Thus, the agent updates the rewards and the scores 

continuously and takes the next actions with respect to these 

updated rewards, scores and the Q values. 

This gives rise to a self-driving car using the reinforcement 

learning technique. 

 

Chart -1: Behavior with respect to the time and the reward 
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4. SUPERVISED V/S REINFORCEMENT MODEL 

In the supervised learning model the mapping between the 

images to the car’s attributes like speed, steering angle, 

throttle and brake is done, so whenever the car/ model gets 

a new image it will act accordingly whereas in reinforcement 

learning model the car explores the environment at first for 

some time as a part of training and with respect to the 

rewards it gets, it moves in the environment taking various 

decisions like going left, right or straight. 

Supervised learning model needs a lot of data and 

predefined training for a long time only then it can be 

implement accurately whereas reinforcement learning 

adapts quickly with less training and data. 

Reinforcement learning model in this scenario can easily 

evade or surpass any obstacle thrown to it by the user 

anytime, anywhere whereas the supervised learning model 

fails to do so. 

Supervised learning model can easily facilitate a large 

number of features and a high accuracy can be obtained but 

we will have to use a powerful enough computer that run on 

multiple graphics processing unit(s). 

 

5. CONCLUSIONS 

 

In this paper we have given an overview of the two different 

models that is the supervised learning model and the 

reinforcement learning model with respect to a self-driving 

car. And how each model behaves when the hyper 

parameters are tweaked, variations in the activation 

functions is made and how long the model is trained. 

The model can be furthered improvised by changing the 

environments and the architecture, and the implementation 

in general can be improved by combining the learning 

models and further tweaking the hyper parameters or 

adding more layers to the architecture. 
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