
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2335

Physical Database Design Techniques to Improve Database

Performance

Syed Ateeq Ahmed

---***---

Abstract - Performance tuning of a database is one of the
crucial responsibilities of a Database Administrator (DBA).
There are a vast number of areas where the DBA need to tune
in order to improve performance of the database. However,
improving performance on the go can be a challenging task
for any DBA. In this research paper the main focus is on
improving the performance of database by applying correct
physical database design techniques. Applying valid
techniques can improve the performance of the database
drastically. In this research paper, key techniques to improve
the performance have been identified and discussed.

Key Words: B-Tree, Bitmap, OLTP, DSS

1. INTRODUCTION

Physical database design is to maximize the efficiency of
data processing. When designing a database, the main focus
is on minimize the execution time of queries. The physical
database design process requires to take several crucial
decisions that will have an impact on the performance of the
database applications. These decisions include the storage
format, designing fields, appropriate usage of data types,
coding style etc. However, the main focus of this research
paper is on major physical database design areas which will
have performance impact. In this research paper, the focus is
on the following major physical design issues:

 Indexing

 Denormalization

 Data Partition

1.1 When to use indexes

As the size of the databases are very large, mostly in
terabytes, searching for data is a time consuming process.
Full-table scans should be avoided. To access the data block
quickly, indexes can be used. Indexes provide pointers to the
data block where the intended data is available. For example,
an index can be created to find the employee details given a
particular Employee ID. The Database Administrator (DBA)
creates indices in a database as a part of performance tuning
techniques. However, use of indexes should be done with
care, as too many indexes on a table could damper the
performance.

The main purpose of physical database design is to
enhance the performance of the database application. During
the database design, the DBA must identify the attributes to
create indexes. In certain situations, there is a possibility
that indexes can decrease the performance. DBA must make
a tradeoff between the performance gains and the overhead
that will occur due to the creation of indexes. The following
are the guidelines that the DBA and the database designers
must follow to fine tune the database performance:

 Indexes are mostly useful on larger tables

 Index the columns that are in the predicate
clause of join conditions. Creating indexes on
foreign key columns as they are used mostly in
the join conditions.

 Index the columns that are used in ORDER BY
and GROUP BY clauses.

 Create an index if you need to access less than 15
per cent of table data.

 Columns data having large number of characters
is poor choice for indexing

 Avoid indexing on the columns which are
frequently updated.

 Choose the columns to index which have high
selectivity.

 Avoid creating too many indexes on a table.

 Avoid index on columns that have too many null
values.

Finally, the golden rule is that we should consider the type
of queries that are expected to occur as against the table’s
columns.

1.2 Type of Applications

Most of the applications developed are of the type online
transaction processing (OLTP). Examples of OLTP systems
are order entry, sales and purchase processing, airline
reservation etc. In an online transaction processing system,
transactions are short, however, large number of users shall
be online and operations on the database are very frequent.
Operations on the database in OLTP applications can be data
manipulation or retrieving information from the database.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2336

In contrast, data warehouse applications contain very large
databases, mostly historical data. In case of decision support
system, few number users will be online and large volumes
of data are used in data processing and performing analytical
operations on the database.

The types of indexes are crucial and the database
administrator must take care in choosing the appropriate
index type. In case of an incorrect index type, the
performance of the database application can be adversely
affected.

1.3 Type of Indexes

Due to the different types of applications, the type of data
stored in the database, format of data, and most importantly
the type of queries that run against the database are some of
the reasons for choosing appropriate type of index. The
database administrator must be well averse with the types of
indexes in order to make appropriate decision in choosing
the relevant index type. The following are some of the types
of indexes. The database administrator has to choose the
relevant index based on the type of information that needs to
be retrieved from the database.

 Unique index

 Concatenated index

 B-tree Index

 Bitmap index

 Function based index

 Partitioned index

 Reverse key index

2. Denormalization

 Database normalization is done to remove the
redundancy of the data so as to maintain the integrity of the
database and to eliminate the redundant data. Normalizing a
database is part of an effective database design process
whereby a table is decomposed into two or more tables with
an intention to remove anomalies. A normalized database
can be avoid various anomalies, however, may have a
negative impact on the performance of the database. The
execution time of queries on normalized database is
considerably high due to the multiple joins across the tables.
Normalized tables can lead to inefficient data processing.

 To improve the performance of the database,
denormalization of a database can be purposely done where
tables are transformed into non-normalized form. This can
be achieved by adding redundant columns to tables. Derived
columns can also be added to denormalize a database.

Consider the following table structures:

Fig-1: Sample table structures

If we need to generate a student report to display the
marks obtained by a student along with name of module,
name of specialization and name of the student, the query
will take considerable time to execute as it involves multiple
join conditions. Performance gains can be achieved by
including the relevant redundant columns to the Stu_Marks
table. Another way to improve performance would be to
include the derived attributes in the table Stu_Marks e.g.
total marks.

3. Partitioning

Queries that run against large volumes of data could be time
consuming and will have negative impact on the performance
of the database. Consider the student marks table given in
figure-1. As the students’ data gets accumulated over the
years, the Stu_Marks table can have millions of records within
a few years’ of time span. If we need to run queries against
such large tables, data partitioning can be an effective
mechanism to achieve performance gains.

 Depending upon the requirement, partition can be done
as either a vertical partition or a horizontal partition.
Consider the Stu_Marks table shown in Figure-1, if we need to
work on the current students data, we can perform a
horizontal partition separating the historical data with the
current data. Students who have already completed the
course can be segregated to separate table. If the data
volume increases many folds, the Stu_Marks table can be split
up further based upon the Specialization of the student. In
case of a table having a very large number of columns,
vertical partition can be done by segregating columns of our
choice into separate tables. Partitioning of data brings

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 2337

further benefits in the form of ease of managing the data and
availability of the data.

 Data Partitioning can be a very effective mechanism which
enables the database administrators and database designers
to easily handle the multi-terabyte systems where the
availability of the data is a key requirement. Partitions are
also useful in parallel processing environments where
server1 can work on partition1, server2 can work on
partition2 etc. increasing the performance of the database.

Fig-2: Vertical Partition

 The figure-3 shows how a horizontal partitioning can be
done on a table data. In case of horizontal partitioning,
number of columns shall remain the same in the partitioned
tables. It can be done to avoid long full table scans.

Fig-3: Horizontal Partition

4. CONCLUSIONS

 In this research paper, crucial aspects of physical database
design having an impact on performance have been
discussed. There are certain other physical design areas
where the Database Administrator and Database Designers
need to focus to achieve performance gains.

REFERENCES

[1] Patil, S., Damare, P., Sonawane, J., Maitre,N., “Study of
Performance Tuning Techniques,” JETIR, 2015.

[2] Matalqa, S.H., Mustafa, S.H., “The Effect of Horizontal
Database Table Partitioning on Query Performance”,
IAJIT, 2016.

[3] Hoffer, J.A., Ramesh, V., Topi, H., “Modern Database
Management System” , 10th edition, 2011.

[4] Baer H., “Partitioning in Oracle Database 11g”, Oracle,
2007.

[5] Agrawal S., Narasayya, V. and Yang, B., "Integrating
Vertical and Horizontal Partitioning into Automated
Physical Database Design”, SIGMOD, 2004.

