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Abstract - Generalized Prandtl Neural Networks (GPNNs) 
has been used in Nonlinear Dynamic analysis of concrete 
gravity dams. GPNNs are the new type of neural networks, by 
which deteriorating hysteresis behavior of materials, in this 
case concrete, can be simulated implicitly and precisely. The 
architecture of GPNNs is the same as Multi-Layer Feed-
Forward Neural Networks (MLFFNNs), but the only difference 
is that instead of sigmoidal activation function, the new kind of 
activation function has been utilized in the neurons of the 
hidden layer which has capability of learning nonlinear 
deteriorating hysteresis behavior of materials, called 
Deteriorating Stop (DS). The behavior of concrete gravity 
dams under earthquakes is complicated because of cracks 
which can be resulted in having deteriorating hysteresis 
behavior in concrete of the dam. Because of the micro-
cracking, the hysteresis loops of concrete are usually degraded 
under cyclic and transient loading and resulted to have 
asymmetric and non-congruent hysteresis loops. In this paper 
a smeared crack model is used for collecting nonlinear data to 
train the neuro-modeller, and its free parameters are adjusted 
through identification. Conventionally, mathematical models 
that have some free parameters are assumed for the 
simulation of nonlinear behavior of concrete. Unfortunately, 
there is no unique mathematical form that can be utilized for 
modeling nonlinear behavior of concrete. This is the main 
drawback of mathematical models. Owing to this, MLFFNNs as 
general approximator tools have found a special place in the 
identification of material behavior as model-free systems. 
However, MLFFNNs cannot learn hysteresis behavior of 
concrete precisely because they are static systems and have no 
internal memories, whereas nonlinear autoregressive 
exogenous (NARX) neural networks compensate for this lack 
by placing a simple past-state memory in the input layer of 
conventional MLFFNNs. In this paper based on the GPNN, a 
neuro-modeler is designed and utilized in the nonlinear 
dynamic analysis of concrete gravity dams under seismic loads 
with severe damage. Koyna dam has been used as an example. 
A comparison of the results shows that the GPNN type of the 
neuro-modeler is much more successful than the previously 
proposed neuro-modeller based on conventional MLFFNN. 
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1.INTRODUCTION  
 
Recently artificial neural networks (ANNs) have been 
utilized as systems that are trained to learn to solve many 
different structural engineering problems [1-7]. Among the 
different kinds of ANNs, Multi-Layer feed-forward neural 
networks (MLFFNNs) have been vastly used in the field of 
nonparametric identification of dynamic systems. In 2009, 
Joghataie and Dizaji [8] introduced a new architecture of 
MLFFNNs for simulating the nonlinear behavior of concrete 
gravity dams under earthquake excitation. However, 
Multilayer feedforward neural networks are static systems 
and have no internal memories, whereas nonlinear 
autoregressive with external input (NARX) neural networks 
[9] compensate for this lack by placing a simple past state 
memory in the input layer of conventional MLFFNNs. This 
type of neural network has been used in the literature for 
dynamic problems. For instance, Joghataie and Dizaji (2011, 
2012, 2013) [10-12] used MFFNNs with past state memory 
in their input layers for the nonlinear dynamic analysis of 
concrete gravity dams. One can use NARX neural networks 
with dynamic input/output to model dynamic systems 
without an internal non-measurable state. In particular, 
limitations arise for processes with non-unique 
nonlinearities, such as hysteresis and backlash, where 
internal non-measurable states play a decisive role[13]. In 
addition, other types of conventional neural networks, such 
as recurrent and time-delay neural networks, do not have a 
perfect capability to learn hysteretic behaviors. To 
compensate for this drawback of conventional neural 
networks in hysteresis learning, attempts have been made to 
devise new types of neural networks for hysteretic problems 
[14-15]. In 2008, Joghataie and Farrokh [14] proposed a new 
neural network called a Prandtl neural network (PNN) and 
used it successfully in the dynamic analysis of nonlinear 
inelastic frames and trusses (2008, 2011). The PNN uses 
stop neurons in its hidden layer. Each stop neuron has a 
complete memory for hysteresis and an adaptive parameter 
that is tuned during the training of the PNN. These two 
characteristics of stop neurons enable the PNN to learn 
hysteretic behaviors without any data on the past state or 
non-measurable internal variables in its input layer; thus, 
the PNN is not prone to error accumulation (Fig. 1). 
However, the PNN is suitable for hysteretic problems that do 
not undergo degradation. Because of microcracking, the 
hysteresis loops of some materials are usually degraded 
under cyclic and transient loading, and PNNs cannot learn 
them because they use stop-activation functions, which do 
not deteriorate. Recently, Farrokh et al.[16] introduced a 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 05 Issue: 06 | June-2018                   www.irjet.net                                                                  p-ISSN: 2395-0072 

 

© 2018, IRJET           |            Impact Factor value: 7.211         |          ISO 9001:2008 Certified Journal          |        Page 1991 

 

new type of neural networks called a Generalized Prandtl 
neural network (GPNN) and applied it successfully in the 
simulating hysteresis deteriorating behavior of materials. In 
this paper, a new kind of activation function using a 
particular combination of stop and play operators is 
proposed and used in a feedforward neural network to 
improve its learning capability in the identification of 
nonlinear hysteretic material behavior with both stiffness 
and strength degradation. Moreover, using the proposed 
neural network, a neuro-modeler is designed and used in the 
dynamic analysis of a one-story shear frame under seismic 
loads with severe damage. By comparing the results, the 
authors can conclude that the generalized Prandtl neural 
network type of the neuro-modeler is more successful and 
appropriated than the previously proposed Prandtl neural 
network type. In order to show the performance of the 
GPNN, the comparison between the GPNN response and the 
other model is helpful. Recently Joghataie and Dizaji. (2013) 
[12] proposed a new architecture neural network for 
modeling the nonlinear hysteretic behavior of concrete 
gravity dams. In this short paper, in a more applied case, in 
order to show the capability of GPNN, results of the 
aforementioned paper has been compared with the results 
obtained from GPNN. A comparison of the results obtained 
from GPNN with the results obtained from using MLFFNNs, 
shows the significant improvement in terms of the dam 
response and size of the neural network, made by the GPNN. 

 
 

Fig. 1. Architecture of PNN. 

2. GENERALIZED PRANDTL NEURAL NETWORKS 
 
In 2015, Farrokh and his coworkers [16] introduced a new 
type of neural network called Generalized Prandtl neural 
networks and used it successfully in simulating deteriorating 
hysteresis behaviors. The structure of GPNN is the same as 
Prandtl Neural Network (PNN) which was previously 
introduced by Joghataie and Farrokh (2008) [14], but GPNN 
uses new neurons with activation function in accordance 
with DS operator, and this newly defined neuron has been 
called DS neuron. It enjoys deterioration in its hysteresis 
loops; therefore, GPNN is able to model hysteresis with 
deterioration. Therefore, in comparison with PNN, GPNN has 
capability of learning deteriorating hysteresis behaviors as 
well which means GPNN is more generalized than PNN. The 
GPNN has been mathematically stated by: 

 

 (1) 
 
Eq. (1) could be represented in the form of a multilayer feed-
forward neural network with linear neurons in the input and 
output layers and m DS neurons in the hidden layer. As 
shown in Fig.2, the connection weights between the input 
neuron and all neurons in the hidden layer have been 
assumed to have a value of 1.0 because of the equivalence 
with Eq. (1). In a GPNN with m DS neurons in the hidden 
layer, there are totally 3 m free parameters of which m 
parameters are the connection weights between the hidden 
layer neurons and the output neuron ( ; j = 1, 2, ..., m) and 2 

m parameters are the internal free parameters for DS 
neurons in the hidden layer ( , j; j = 1, 2,...,m). It should be 

mentioned that js can control overall deterioration of the 
GPNN so that if all the js have the large values the 
deteriorating capability will diminish and hence it will 
behave like a PNN. Genetic Algorithm (GA) has been used for 
tuning r and of the GPNN. The details of the method are 
explained in Farrokh et al research [16]. 

 
Fig. 2. Architecture of the GPNN 

After the text edit has been completed, the paper is ready for 
the template. Duplicate the template file by using the Save As 
command, and use the naming convention prescribed by your 
conference for the name of your paper. In this newly created 
file, highlight all of the contents and import your prepared 
text file. You are now ready to style your paper.  

 

3. MLFFNN-NEURO MODELER-BASED MODEL 
 
Joghataie and Dizaji (2013) [12] utilized Multi-Layer Feed 
Forward Neural Networks (MLFFNN) for the modeling of 
concrete gravity dams with the nonlinear hysteretic 
response under earthquake loading. As the first study on the 
subject to prepare a controlled precise data for the training 
and testing of the neuro-modeler so that the precision of the 
method could be evaluated and analysis software was used 
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to simulate the experiment. The smeared crack model, which 
has been one of the models used successfully in the 
literature to simulate the nonlinear response of the concrete 
gravity dams, has been used in this study as well. In this 
paper, the first step is to analyze the dam under study as it is 
subjected to different earthquake simulations for obtaining 
large data about its nonlinear response. The second step is to 
train a neuro-modeler, based on the collected data, to 
implicitly learn the nonlinear response of the dam being 
subjected to the training earthquakes. The last step is to test 
the accuracy and generalization capabilities of the neuro-
modeler used for the analysis of the dam under a number of 
selected and specific earthquakes of different properties 
including both near- and far-field excitations. After passing 
all steps and by looking through the successful test, the 
authors can expect the neuro-modeler can be able to provide 
valid and precise results about the response of the dam 
under any special earthquake. Three concrete gravity dams 
with differing characteristics and in different geographical 
locations including the Koyna, Pine Flat, and Sefid-Rud dams, 
which have been both numerically and experimentally 
studied because they had experienced considerable damage 
during earthquakes, have been utilized as examples. A 
neuro-modeler has been trained for each of the dams and 
tested. The results are reported in this paper. The dam 
neuro-modelers have been successful in providing resonable 
results in this numerical simulation of the nonlinear 
hysteretic behavior of dams. 
 

4. GPNN-NEURO MODELER-BASED MODEL 
 
The main goal of this example is to train a neuro-modeler 
with the capability to perform a dynamic analysis of the 
concrete gravity dams shown in Fig.3(a) during an 
earthquake. The neuro-modeler architecture is shown in Fig. 
3(b). The input layer of the neural network is comprised of 
the displacement and velocity at the beginning of the time 
step, as well as the ground acceleration during the time step, 
whereas the output layer contains the displacement and 
velocity at the end of the time step. In the hidden layer of the 
neural network, there are two DS neurons, and the other 
neurons have a linear activation function. 
 
 

 
Fig. 3. GPNN-neuro modeler: (a) the concrete gravity 

dams, (b) The GPNN neuro-modeler architecture 

4.1. Example: Nonlinear Dynamic Analysis of the Koyna 
Dam 
 
For comparison of the precision of the new method (GPNN) 
and MLFFNNs, the Koyna Dam which is located in India has 
been used as an example in this paper. The Koyna Dam is 
categorized as the largest concrete gravity dams in the 
world, built in India in 1963. Its height is 103 m and length of 
the crest is 808 m. In 1967, the 6.5 Richter- scale earthquake 
created severe damage in the dam structure. When the dam 
was hit by the earthquake the water level was below the top 
of the crest (around 11 m) and a crack was appeared at 
around 36 m below the top of the crest. The crack grew and 
reached to the lower level into its body. Many investigators 
and researchers have visited and studied the dam and 
recorded the disaster which has been applied in the 
development of knowledge related to concrete gravity dams 
[17-18]. 
In this paper, the two dimensions’ analysis has been applied 
for the nonlinear hysteretic response and the proposed dam 
was discretized by four-node plain 2D FE meshes used by 
other researchers [18]. For the Koyna Dam, the number of 
elements was 1240 elements. Finally, for the training data of 
our neuro model, the displacement and acceleration time 
histories of the crest were gathered and used. The Koyna 
Dam can learn to simulate the response of the dam crest by 
considering this training data. In addition, The Koyna Dam 
has been used as an example by Joghataie and Dizaji (2013) 
[12] for analyzing the performance of MLFFNNs, so it could 
be an appropriate example for applying GPNN and compare 
its result with previous study.  
To get more information regarding heuristic algorithms and 
optimization techniques one can refer to [19-20].  
 
5. COMPARISON OF GPNN AND MLFFNN-NEURO 
MODELER- BASED MODELS 
 
A neuro-modeler, whose hidden layer contained three DS 
neurons instead of six sigmoid neurons, was considered. 
Also as it can be seen in Fig. 4, number of inputs are reduced 
significantly compared to MLFFNN-Neuro modeller based 
model. This neuro-modeler was in accordance with the PNN 
previously proposed by Joghataie and Farrokh (2008) [14]. 
The same procedure used for the GPNN-type neuro-modeler 
was used for its training and testing. A comparison of the 
results between MLFFNN-neuro modeler based model and 
GPNN-neuro modeler based model show significant 
improvement in response of the displacement of the crest. 
Clearly, the MLFNN-type neuro-modeler performance is 
much worse than that of the GPNN-type neuro-modeler. The 
Euclidean error norms of the MLFFNN-neuro modeller are 
3.5 and 3.2 cm for white-noise and 200% El Centro 
excitations, respectively. Also, the Euclidean error norms of 
the GPNN-neuro modeller are 0.97 and 0.74 cm for white-
noise and 200% El Centro excitations, respectively A 
comparison between the obtained results of the MLFFNN 
type and the GPNN type of the neuro-modeler shows that the 
GPNN reduced the simulation error of the neuromodeler by 
one order of magnitude. 
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Fig. 4. Comparison of GPNN neuro modeler and MLFFNN 

neuro modeler 

6. DAMAGE DETECTION 
 
As it is mentioned before, beta parameter can control overall 
deterioration, which means having higher beta shows 
linearity of the results. Therefore, it can be applied as a tool 
to detect possibility of damage in the structure, in this case 
the dam. Owing to it, we have generated some linear analysis 
data and also nonlinear analysis data to illustrate possibility 
of damage detection using proposed GPNN neuro modeler. 
Based on these results GPNN neuro modeler has been tested 
and the values of the beta’s have been compared for the both 
cases. The comparisons indicate that linear analysis result 
has got higher values for the beta’s and the nonlinear 
analysis result has obtained much less values for the beta’s. 
 
7. FUTRUE WORKS 
 
This is a preliminary research for application of GPNN in full 
scale structures. In the future this new type of neural 
network can be applied to more complicated structures with 
highly nonlinear hysteretic behavior. Also another 
application of GPNN model can be its application in passive 
control systems as automated-smart systems.  
 
8.CONCLUSION 
 
The new novel proposed neural network has been applied as 
a specific method of nonlinear dynamic analysis of concrete 
gravity dams. The neuro-models are trained to learn the 
pattern of the response of the crest of dam based on the 
selected data. In the previous study, the MLFFNNs has been 
used to predict the response of the crest of three different 
dams. This new neural network known as GPNN has been 
proven to be a suitable method to consider memory in 
neural network, However, some issues exist. By considering 
these issues in this study, the authors have applied GPNN 
introduced by Farrokh et al (2015). The researchers proved 
the capability of GPNN for the nonlinear dynamic analysis of 
concrete gravity dams by comparing its results with the 
results obtained by MLFFNNs in the previous study. This 
comparison confirmed that there is the significant 
improvement in terms of the dam response, time solving and 
size of the neural network. 
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