
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1611

Evolution of Version Control Systems and a study on TortoiseSVN

Pratik P Bhoir1, Harshali Patil2

1Student, Mumbai Educational Trust, Mumbai, Maharashtra, India
2Professor, Mumbai Educational Trust, Mumbai, Maharashtra, India

---***---
Abstract - Almost each software engineer who is working on
a closed or open source project has a critical problem –
managing their work. An open source project is contributed
by large number of software developers. In such cases, it is
quite difficult to keep track of the changes made to the
source code because there can be a malicious developer
whose major aim is to damage the project. So, these kinds of
harm should be identified as quick as possible and there
should be a way to revert back to older working solution in
case of any failure. Each working version of the file should be
recorded for the sake of the user to recoup effortlessly and
the user can switch to any working version anytime.

Key Words: CVCS, DVCS, GIT, TortoiseSVN.

1. INTRODUCTION

This document is template. We ask that authors follow some
simple guidelines. In essence, we ask you to make your paper
look exactly like this document. The easiest way to do this is
simply to download the template and replace(copy-paste)
the content with your own material. Number the reference
items consecutively in square brackets (e.g. [1]). However,
the authors name can be used along with the reference
number in the running text. The order of reference in the
running text should match with the list of references at the
end of the paper.

2. History of Version control systems

This document is template. We ask that authors follow some
simple guidelines. In essence, we ask you to make your paper
look exactly like this document. The easiest way to do this is
simply to download the template and replace(copy-paste)
the content with your own material. Number the reference
items consecutively in square brackets (e.g. [1]). However,
the authors name can be used along with the reference
number in the running text. The order of reference in the
running text should match with the list of references at the
end of the paper.

2.1 The Emergence

To overcome this problem, Source Code Control System
(SCCS) came into play. The SCCS was designed to track
changes in the source code and other text files during the
software development. It was developed at Bells Lab in 1972
by Marc Rochkind and it was implemented on IBM
System/370 computer running OS/360. Soon later Revision
Control System (RCS) replaced SCCS. RCS was first released
in year 1982 at Purdue University by Walter F. Tichy. It

operated only on single files., hence it did not support atomic
commits affecting multiple files. The RCS structure was very
simple to understand and easy to work with. But security
was an issue and only one user could work on a file at a time.
[6].

2.2 The Classic Phase

In 1990, VCS moved into new phase. The Concurrent
Version System (CVS) was developed by Dick Grune as a
series of shell scripts. CVS uses a Client-Server architecture.
The current version of the project(s) and its history are
stored in the server. The clients are connected to the server
to “check out” the complete copy of the project, work on the
copy and later on “check in ” the updated copy of the project.
The CVS is a type of Centralized Version Control System
(CVCS) which allowed many developers to work on the same
file at the same time. It was the first which supported
Merging and Branching but it was didn’t worked efficiently.
[6]

2.3 The Post-Classic Phase

Post classic phase of the VCS, came the concepts of
Subversion (SVN). It is the open source Centralized version
control system under the Apache Licence . It was created by
CollabNet Inc. in 2000 and is still widely used globally.

It maintains the versioning for files, directories, the file
metadata and the renames. The users can copy and/ or
move entire directory-hierarchy very quickly and easily,
while retaining full revision history. In 2010, it became one
of the top-level Apache project. The latest stable version of
Subversion (1.9.0) was released in 2017. [6]

2.4 The Modern Phase

There came a renaissance in the year 2009-2010 with the
introduction of GIT and its like. GIT is a Distributed Version
Control System (DVCS). Linus Torvalds developed GIT in
year 2005 with an aim to increase speed, data integrity and
support for distributed and, non-linear workflow. It is a free
open source software under the terms of GNU General Public
License version 2.

GIT provides a support for non-linear development of the
software. It supports quick branching and merging and also
includes tools for navigating and visualizing a non-linear
development history.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1612

GIT is compatible with existing systems and protocol. The
repositories of GIT can be published via Hypertext Transfer
Protocol (HTTP), File Transfer Protocol (FTP), or a Git
protocol over either a plain socket, or Secure Shell (ssh).

GIT is efficient of handling large projects. It is very fast and
more scalable than other few versions of VCS. It can fetch
version history from the locally stored repository hundred
times faster than fetching it from the remote server. GIT can
perform automatic garbage collection when there are
enough of loose object creation in the repository.

3. Types of Version control systems

Version Control systems provide a way to manage a large
number of developers working together and keep a track of
who does what. Over the ages, there is an evolution in the
Version Control Systems. The Version Control System can be
categorized into three types: Version Control systems
provide a way to manage a large number of developers
working together and keep a track of who does what. Over
the ages, there is an evolution in the Version Control
Systems. The Version Control System can be categorized into
three types:

3.1 Local Version Control System

Majority of people choose version-control method is copy
files into another directory (better if the directory is time-
stamped). This is the commonly used approach as it is very
simple, but at the same time, it is also incredibly error prone.
There are higher chances that the user may forget the
current working directory and he/she may accidentally
write to the wrong file or copy over files which you don’t
mean to.

To solve this issue, programmers have developed Local VCS’s
that have a simple database that keeps changing to files
under revision control system

Fig -1: Local Version Control System

RCS is one of the popular Local VCS, which is still distributed
with many computer systems today. The famous operating
system Mac OS X still includes the RCS command when
installed with the Development tools. RCS has a

straightforward interaction model. For each working file or
document, you instate its RCS file once, at a point enter a
cycle of checkout, change and checkin tasks. En route, you
can change a portion of the RCS record's metadata, also. The
greater part of this is done through RCS commands; you
require not alter the RCS record straightforwardly (and in
actuality, you ought to most likely abstain from doing as such
or RCS end up confused). This model is fairly comparable to
utilizing a library (of books). With a library, you agree to
accept a library card (instate), at that point enter a cycle of
taking a book home (checkout), appreciating it (NB: without
alteration, one expectation), and returning it to the library
(checkin).

3.2 Centralized Version Control System

People encountered issues when they needed to collaborate
with the developers on the other systems. To overcome this
problem, Centralized Version Control System were
developed. These types of VCSs record the history of changes
on a central server from where everyone requests for the
latest version of the work and pushes in the newest changes
to. Everyone sharing the server also shares everyone’s work.

Fig -2: Centralized Version Control System

There are few famous tools available to meet this need, For
example: CVS, Perforce and SVN. These types of VCSs allow
more access control via folder permissions by allowing
checkout of the only needed sub tree from the repository
tree. These systems are more prone to be backed up
regularly, providing more reliable environment of work.

Centralized Version Control System overcomes the problem
of previous type of VCS of working on a single file at a time
and most of the other drawbacks. However, this system also
has some serious downsides. If that server goes down even
for some time, then during that duration no user can merge
their work at all or save versioned changes to anything
they’re working on. If the central database becomes
corrupted, and proper backups haven’t been kept,
everything is lost.

3.3 Distributed Version Control System

To overcome the drawbacks of Centralized VCSs, Distributed
Version Control Systems stepped in. In DVCS, the client users
not only check the latest versions of the files, but also

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Secure_Shell

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1613

mirrors the repository. So, in case if any servers goes down,
and these systems are collaborating via this server, any of
the client repositories can be copied back to the server to
restore it. Every checkout is a full backup of all the data.

Many DVCS work pretty well with having many remote
repositories they can deal with, so the developers can work
with different groups of people in various ways working
within the same project. This enables them to set up several
kind of workflows that aren’t possible in the centralized
version control systems, such as hierarchical models.

Fig -3: Distributed Version Control System

The Distributed VCS come with advantages like
availability. The history is fully available to everyone at all
the times. It is extremely fast because of its local nature of
the majority of the operations. It doesn’t require access to
remote servers. Branching and merging can be done very
easily in Distributed VCS.

4. ABOUT TORTOISE SVN

TortoiseSVN is an open source Windows client for the
Apache Subversion version control system which is available
at free of cost. The files are stored in the central repository.
The repository is just like an ordinary file server, except that
it records every change made to your files and directories.
This gives users a freedom to recover to the older versions of
the files and analyze the history of how and when your data
changed and who changed it.

TortoiseSVN is very easy to use as all the commands are
available directly from the windows explorer. User can view
the status of their files and directories directly in the
windows explorer. It also provides descriptive dialogs and is
constantly improved due to user feedback. The subversion
protocols that are supported are http, https, svn, svn+ssh,
file, svn+XXX. TortoiseSVN also provides mechanism which
allows to integrate any web-based bug tracking system.

4.1 FEATURES OF TORTOISE SVN

4.1.1 SHELL INTEGRATION

It integrates smoothly into the Windows shell (the explorer).
The user does not need to switch to different application
when he need functions of version control. The user is not
limited to using the Windows Explorer, TortoiseSVN’s
context menus work in the other file manager. All the
subversion commands are available from the explorer
context menu. TortoiseSVN adds its own submenu in the
explorer context menu. [5]

Fig -4: TortoiseSVN Context Menu

4.1.2 iCON OVERLAYS

The status of each and every versioned file is indicated by
small overlay icon. The user can view the status of the
working file right from it.

The different status of the file or directory can be:

Normal, readonly, added, deleted, modified, locked,
conflicted, ignored, non- versioned. [5]

Fig -5: TortoiseSVN icon overlay

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1614

4.1.3. GRAPHICAL USER INTERFACE

TortoiseSVN helps user to view a list of changed files. The
commit dialog displays all the items that will be in included
in the commit, and each file/directory has checkbox so that
user can choose which file/directory want to be included. [5]

4.1.4. COMPLETE COMMIT

A commit command invoked on a file goes into the
repository completely, or not at all. This enables developers
to build and commit changes as logical chunks. [5]

4.1.5. VERSIONED METADATA

The file differences are expressed by subversion using
binary differencing algorithms, which functions identically
on the both text and binary files. The both types of files are
stored equally compressed in the repository, and the
differences are sent in both the directions across the
network. [5]

There is a set of “properties” attached to each file and
directory. These properties are versioned over the time, just
like the file contents. User can invent and store any arbitary
key/value pairs the user wish. [5]

4.1.6. WELL ORGANIZED BRANCHING AND TAGGING

Branches and tags are created easily by subversion by
simply copying the project, using a mechanism similar to a
hard link. These operations require very less and constant
time, and occupies very less space in the repositories.

4.2. BASIC VERSION-CONTROL CONCEPTS

4.2.1 THE REPOSITORY

TortoiseSVN is a centralized version control system. The
repository is at its core, which is the central store of the data.
The data is stored in the repository in form of filesystem tree
which is a typical hierarchy of files and directories. Multiple
clients can connect to the repository and can read or write to
the files. A client makes the information available to others
by writing data. The client receives information from others
by reading the data. [3]

Fig 6 –: A Typical Client/Server system

The Subversion repository records each and every change
ever written to it. It remembers every change to every file,

and even changes to the directory tree itself, activities such
as addition, deletion, and rearrangement of files and
directories.

When a user reads a file from the repository, the user not
only sees the latest version of the filesystem tree but also
view previous states of the filesystem. The TortoiseSVN has
an ability to answer historical questions, “what this file
contained last Monday?”, or “what changes were made to the
file?”, and “who the last person was to make changes in the
file?” These are the kind of questions which can be easily
answered by TortoiseSVN.

4.2.2. THE VERSIONING MODEL

The main aim of all VCSs is to solve a common problem:
How will the system will allow the developers to share
information by avoiding concurrency.

Lets imagine a scenario: Two co-workers Alice and Bob
decide to edit the same file in the repository at the same
time. If Bob saves his changes to the repository first, then
there are chance that after a few moment later Alice could
accidentally overwrite them with his own new version of file.
The Bob’s version of the file won’t be lost permanently as the
system records every change, but changes made by Bob
won’t be present in Alice’s version of the file, as she never
saw Bob’s changes before updating the file. But Bob’s work is
still lost from the latest version of the file accidently. This is
the situation every team needs to avoid while working on a
project. [3]

Fig 7 :- Problem to be avoided

4.2.2.1. THE LOCK-MODIFY-UNLOCK SOLUTION

Most of the Version Control Systems use the lock-modify-
unlock solution for the above problem, and it is considered
as the simplest solution. But in such system, the repository
allows only one user to modify a file at a time. First Bob must
lock the file so that he can make modifications in it. Locking
the file while prevent Alice from making changes to it. All
Alice can do is read the file and wait for Bob to release the
lock. If she tries to lock the file, the repository will reject the
request. After Bob has released the lock, Alice can view Bob’s

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1615

work in the file and only then she can apply lock to the file to
edit it. [3]

The issue with lock-modify-unlock solution is that it is
restrictive and it often becomes a blockage for users. The
various problems which arises are:

1. Administrative problem

2. Unnecessary Serialization

3. Create a false sense of security

4.2.2.2. THE COPY-MODIFY-MERGE SOLUTION

TortoiseSVN use this copy-modify-merge solution as an
alternative to locking. In this method, each user reads
repository and creates a working copy of the file or project
which is personal. This enables users to work parallel and
modify their personal copies. In the end, all the personal
copies are merged into a new, final version. [3]

Consider another scenario: Alice and Bob each one of them
create a working copy of the same project, which is copied
from the repository. Both work concurrently, and make
changes to the same file A, but within their own copies. Alice
saves her changes to the repository first. When Bob tries to
save his changes after Alice, the repository informs Bob that
the file has been somehow changed since he last copied it.
So, Bob asks his colleagues to merge any new changes from
the repository into his working copy. Once the set of changes
are integrated to his copy, he saves his working copy back to
the repository.

Fig 8- The COPY-MODIFY-MERGE Solution

Fig 9- COPY-MODIFY-MERGE Solution (cont.)

This solution may sound a bit confusing, but practically it
runs effectively smoothly. This allows users to work in
parallel and never wait for one another. When multiple users
work on the same files, most of their concurrent changes
don’t overlap at all.

TortoiseSVN by default uses this copy-modify-merge
solution. There is only one situation where lock-modify-
unlock method comes out better than this solution, that is
when there are unmergeable files. For example, if users are
working on some graphic images and both the users make
some changes in that image at the same time, there is no
possibility by which both the images can be merged
together. Either user A or user B will lose their changes.

4.2.3. TORTOISE SVN IN ACTION

4.2.3.1. WORKING COPIES

A TortoiseSVN working copy is nothing but an ordinary
directory tree on the user’s local system, which contains the
collection of files. User can edit these files and if the files are
source code files, user can compile the program from them in
the usual way. The working copy of the user is his/her own
private work area. TortoiseSVN would add other people’s
changes, nor make user’s changes available to others, until
the user explicitly orders it to do so.

When the user has made changes to the files in the
working copy and verified it whether it works properly,
TortoiseSVN provides user with commands tp publish the
work to the rest of the team which is working with him on
the same project (by writing to the repository). If other team
member publishes their own work, TortoiseSVN provides
user with the commands to merge those modifications into
the users working directory (by reading from the
repository).

There are also few extra files, created and maintained by
TortoiseSVN in the working copy, which helps users to carry
out those commands. The working directory contains a
subdirectory named .svn , also known as the administrative
directory of the working copy. The administrative files helps
TortoiseSVN to recognize files with unpublished changes and
the “out-of-date” file with respect to others work.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1616

Fig 10 – Repository’s filesystem

The repository’s root directory contains two sub-
directories: NUM and ARTS. To create a private copy, i.e
working copy of the project, user must checkout some
subtree of the repository. If the user makes some
modifications in the file integer.c, subversion command
commit can be used to publish the updated file to others. To
bring the project up to date, user can use the command
update. This will incorporate all the changes committed by
whole team in their personal copies in the users working
copy.

4.2.3.2. REPOSITORY URLs

There are different methods by which TortoiseSVN
repositories can be accessed - on a local disk, or through
different network protocols. A repository location, is always
an URL. The below URL schema indicates the access
methods:

SCHEMA ACCESS METHODS

file:// Direct repository access on the local or
network drive

http:// Access via WebDAV protocol to
subversion-aware Apache server

https:// Same as http://, but with SSL encryption.

svn:// Unauthenticated TCP/IP access via custom
protocol to a svnserve server.

svn+ssh:// Authenticated, encrypted TCP/IP access
via custom protocol to a svnserve server.

Table -1: Access method schema

4.2.3.3. REVISIONS

Many files and directories can be changed by the commit
command operation as a single atomic transaction. A user
can change content, create, delete, rename and copy files and

directories, and then commit all these operations together as
a unit. Each commit command is treated as an atomic
transaction. Every time the repository accepts a commit, a
new state of the filesystem tree is created, which is called a
Revision. Each revision is identified with a unique natural
number, the number is greater by one than the number of
previous revision. The first revision of the freshly created
repository is numbered zero as it an empty root directory.

Fig 11- The revisions of the Repository

4.2.4. BASIC TORTOISE SVN OPERATIONS

4.2.4.1. CHECKOUT

To checkout a working copy from the repository user need
to do:

Select the directory from the windows explorer where you
want to place your working copy. Right click on that to get
Tortoise context menu. Select TortoiseSVN  Checkout,
which will pop up the below dialog.

Fig 12- TortoiseSVN Checkout in Windows OS.

4.2.4.2. COMMIT

Reflecting the changes, you made in the working copy to
the repository and make it available to the other users who
are working on the same project can be done using commit
command. But make sure before committing your working
copy is up-to-date. To update you can use from the context
menu TortoiseSVN  Update directly.

If your working copy is up-to-date then you are ready to
commit the changes. Select the file/ folder you want to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1617

commit, then select from the context menu
TortoiseSVNCommit..

Fig 13- TortoiseSVN Commit in Windows OS.

4.2.4.3. UPDATE

To update any file / folder in the working copy, right click
on the file/ folder which needs tobe updated and select
TortoiseSVN Update from the explorer menu. This will
update your working copy with the changes from others.

Fig 15- TortoiseSVN Update in Windows OS.

If you want to update the file/folder to a certain revision
then you should use TortoiseSVN  Update to Revision..

4.2.4.4. REVISED LOG DIALOG

User should provide a log message from every changes
made and committed to a file. This way user can keep a track
why and when the changes were made, and he has a detailed
log file to answer these questions.

The Revision Log Dialog answers all queries about the
revision of the file. It displays the revision of file, the Author
who committed the changes, date – on which the changes
were committed, and the log message – which tells why the
changes were made.

Fig 16-TortoiseSVN Revision log Dialog in Windows OS..

5. CONCLUSIONS

The development of source control system was not started
with the many types of technology. They simply maintained
a database with records of files and its versions. But as time
progressed Version Controlling played an important role in
software engineering. Thus, centralized VCSs like
TortoiseSVN came into existence. TortoiseSVN made version
controlling very easy and brought a change in software
engineering. But soon the Centralized VCSs will be replaced
by Distributed VCS to improve the performance and
scalability. Though many organizations now have shifted to
Distributed Version Control Systems like Git, TortoiseSVN is
still in use and is considered reliable by many portals and
organizations like SalesHoo.com, Affilorama Affiliate
Marketting, Thomson.com, VoteHere, etc.

REFERENCES

[1] Version Control Systems for Corporations: Centralized
and Distributed An explorative case study into the
corporate use of version control systems” My Högblom
,Viktor Green

[2] N. B. Ruparelia, "The history of version control", ACM
SIGSOFT Software Engineering, 2010, 35,

[3] “Version Control with Subversion”, Ben Collins-Sussman
Brian W. Fitzpatrick C. Michael Pilato

[4] B. de Alwis, J. Sillito, "Why are software projects moving
from centralized to decentralized version control
systems?", In Proceedings of the 2009 ICSE Workshop on
Cooperative and Human Aspects on Software
Engineering, IEEE Computer Society, 2009,

[5] https://tortoisesvn.net/docs/release/TortoiseSVN

[6] “Version Control System – GIT”, Sanjay Murali, Vivek
Chandru

https://tortoisesvn.net/docs/release/TortoiseSVN

