
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3574

Ideology of Buffer Overflow Exploits

Riha Maheshwari

 6th Semester MCA - ISMS
---***---

Abstract – Buffer Overflow has been around for a very long
time. Buffer Overflow Attacks are simple and very easy to
implement which allows malicious code to execute with the
administrator privileges. It is probably the best form of
software security vulnerability known in last 10 years. Buffer
Overflow attacks are the real concern for Computer systems in
today’s Internet. A big part of security threats would be
removed if the buffer overflow vulnerability could be
eliminated. To mitigate buffer overflow vulnerability, it is very
important to understand how buffer overflow actually works,
the danger they possess to your application and what are the
technique that an attacker can use to exploit these
vulnerabilities. In this paper, I will mostly focus on Stack –
Based Buffer Overflow Attack and SEH Based Buffer Overflow
Attack.

Key Words: Buffer Overflow Exploit, Stack- Based Buffer
Overflow Attack, SHE-Based Buffer Overflow Attack.

1.INTRODUCTION

Buffer Overflow Exploits are also referred to as Stack
Smashing, which are very common attacks performed from
earlier Windows XP age. The exploits are being combined
with the malware, resulting in very complex attack and it is
even difficult for the antivirus to detect. A buffer is a part of
memory which can be allocated to store anything like
character, decimals, integers, etc. The buffer-overrun occurs
when the amount of data entered into the buffer is more
than it was allocated to handle. The extra information gets
overflowed and overwrites the other pointers.

Buffer Overflow attacks can be performed in the program
using vulnerable programming languages but many of them
are prone to these kind of attacks. The extent of such attacks
however would be different which would depend on the type
of programming language that would be used to write the
program. For instance, the code is generally not susceptible
to buffer overflow which are written in Perl and JavaScript.
However, a program which are vulnerable to buffer overflow
attack written in C, C++, Assembly or Fortran could allow the
malicious attacker to compromise the full system. The focus
on the technique used in Buffer Overflow is mainly on Stack-
Based and SHE-Based.

1.1 OVERVIEW

Year Description

1988 Morris Internet Worm

1995 Stack Overflow exploit for NCSA was
published.

1996 Smashing the Stack for Fun and Profit was
published.

2001 Code Red Worm

2003 SQL Slammer Worm

2004-2005 Sasser Worm

2008-09 Overflow in Windows RPC

2009-2010 Stuxnet

2010-12 Print Spooler and LNK overflows

Table 1.1. Overview of Buffer Overflow Attacks

2. WINDOWS MEMORY STRUCTURE

The Memory Structure of Windows Operating System
have multiple sections that can be broken down in different
components. To understand the depth of writing exploits
and taking advantage of poor coding, we first need to
understand all these components. So let us understand all
the components in detail. The following figure shows a basic
representation of the Memory Structure / Memory Map of
Windows Operating System.

Figure. Windows Memory Structure

2.1 STACK AND HEAP

Stack is a programmable concept known as a Last in First
Out (LIFO) structure. Items that are inserted onto the stack
are pushed onto it, and items that are run or removed from
the stack are popped off of it. We can think of it as a stack of
plates or books. To effectively remove books, we have to take
them off the top by one or by sets. The stack is used to
allocate short-term storage for local variables in an ordered
manner and that memory is subsequently freed at the
termination of the given function, unlike the heap, where

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3575

each process can have multiple threads and memory
allocation for global variables is relative arbitrary and
persistent. Each function or thread has its own stack frame.
That stack frame size is fixed after the creation and at the
conclusion of the function the stack frame is deleted.

To better understand the difference between the heap and
the stack movement, let’s see the below figure, which shows
the adjustment as memory is allocated for global and local
resources.

Figure. Stack and Heap

 2.2 PROGRAM IMAGE

In a memory Program image is the portion where the
executable resides. This includes the sections i.e. .text, .data,
.rare which contains the executable code or CPU instructions,
contains the program’s global data, contains non-executable
resources, including icons, images, and strings, respectively.
We just need to put the program image where the actual
executable is stored in memory. Portable Executable (PE) is
the defined format for the executable, which contains the
executable and the DLL.

2.3 DYNAMIC LINK LIBRARY

Shared code libraries like Dynamic Link Libraries (DLLs) are
mostly used in Windows programs which allows efficient
code reuse and memory allocation. These DLLs are also
called modules / executable modules which occupies a part
of the memory space. DLLs are similar to executables, but
they cannot be called directly, and instead they have to be
called by an executable. At its core, the idea of DLLs is to
provide a method for the capabilities to upgrade without
requiring the entire program to be recompiled when OS is
updated. This means that even if other components are going
to be in different memory locations, many core DLLs will
stay in the same referenced locations. Remember, programs
require specific callable instructions and many of the
foundational DLLs are loaded into the same regions of
memory.

2.4 THREAT ENVIRONMENT BLOCK(TEB) & PROCESS
ENVIRONMENT BLOCK(PEB)

The Process Environment Block (PEB) is where non kernel
components of a running process are stored. Information
that is needed by systems that should not have access to
kernel components is stored in memory. Some Host

Intrusion Prevention Systems (HIPS) monitor activities in
this memory region to see if malicious activities are taking
place. The PEB contains details related to the loaded DLLs,
executables, access restrictions, and so on.

A Thread Environment Block (TEB) is spawned for each
thread that a process has established. The first thread is
known as the primary thread and each thread after that has
its own TEB. Each TEB share the memory allocations of the
process that initiated them, but they can execute instructions
in a manner that makes task completion more efficient. Since
writeable access is required, this environment resides in the
non-kernel block of the memory.

2.5 KERNEL

This is the area of memory reserved for device drivers, the
Hardware Access Layer (HAL), the cache and other
components that programs do not need direct access to. The
best way to understand the kernel is that this is the most
critical component of the OS. All communication is brokered
as necessary through OS features. The attacks we are
highlighting here do not depend on a deep understanding of
the kernel. Additionally, a deep understanding of the
Windows kernel would take a book of its own. After defining
the memory locations, we have to understand how data is
addressed within it.

3. WORKING OF STACK BASED BUFFER OVERFLOW

Stack Based Buffer Overflow occurs due to the insufficient
boundary checks. The attack is possible from where the
program accepts the input, can be anywhere. It includes the
input fields, command line argument, sockets, files, etc.
When detecting Stack Overflows, we should be able to
overwrite the Extended Instruction Pointer (EIP).

Stack Based Buffer Overflow occurs due to the insufficient
boundary checks. The attack is possible from where the
program accepts the input, can be anywhere. It includes the
input fields, command line argument, sockets, files, etc.
When detecting Stack Overflows, we should be able to
overwrite the Extended Instruction Pointer (EIP).

To understand what we are trying to do with the writing of
the exploit, we must understand what is happening in
memory. We are going to inject data into an area of memory
where there was no bound checking. This usually means that
a variable was declared a specific size, and when data was
copied into that variable there was no verification that the
data would fit in it before copying. This means that more
data can be placed in a variable than what was intended.
When that happens, the excess data spills into the stack and
overwrites saved values. One of those saved values includes
the EIP.

When calling any function, the Extended Instruction
Pointer(EIP) is saved on the stack for later use. When the
function returns, this saved address is used to determine the
location of the next executed instruction. Thus by

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3576

overwriting the EIP, we can add a differ address to point it to
our payload. The buffer will be filled with more than the
reserved characters, which will allow it to overwrite the EIP
successfully.

Thus, we are going to flood the stack with a variety of
characters to determine the area we need to overwrite. First,
we will start with a large set of A’s. The values we see while
viewing our debugger data will tell us where on the stack we
have landed. The differences in character types will help us
better determine what size our unique character test needs
to be. Now after getting a general idea of where the EIP is, we
can generate a unique pattern with the size of the A’s. This
unique pattern will be injected back into the vulnerable
program. We can then take the unique value that overwrites
the EIP register and compare it to our pattern. We determine
how far down our large unique pattern that value falls and
determine that is how much data is needed be pushed onto
the stack to reach the EIP.

In simple the following is a pictorial diagram that will
explain how the stack overflow works.

Figure. Pictorial View of working of Buffer overflow in
memory

Once we have identified where the EIP is, we can locate the
instruction we want to reference in the EIP by examining the
DLLs. Remember, DLLs that are a part of the program itself
will be more portable, and your exploit will work in more
than one version of Windows. Windows OS DLLs make
writing exploits easier, because they are omnipresent and
have the required instructions you are looking for.

In this version of the exploit, we are trying to Jump to the
ESP as the available space is there, and it is easy to build an
exploit to take advantage of it. If we were using one of the
other registers, we would have to look for an instruction to
jump to that register. We will then have to determine how
much space is available from the manipulated register down
to the EIP. That will help determine how much data needs to
be filled in that area of the stack, as our shellcode will only
fill in a small part of that area.

Here, we will fill our shellcode with No Operations (NOPs).
The NOPs should be inserted between the shellcode and the
EIP are to offset the injected shellcode. So, they are loaded in
appropriate chunks, when instructions are loaded into the
registers. Otherwise, the shellcode will be out of place.
Finally, the sled that is loaded last onto the stack is there to

take up the rest of the space, so when the Jump to ESP is
called the code slides down from the top to the actual
shellcode.

4. WORKING OF SHE-BASED BUFFER OVERFLOW

An exception handler is a part of code which is coded when
designing an application. SEH handles all the exceptions that
occurs during the runtime. By default, Windows has an
exception handler (SEH) which is coded to catch an
exception, if solvable then solve the error or generate an
error message. Exception Handler (SEH) and Next Exception
Handler (nSEH) are the pointers to the SEH that are added to
the stack. The order is reversed (nSEH and then SEH) due to
the flow of the Windows stack. After the exception occurs,
we see that the value of ESP is located 8 bytes before the
value of SEH.

Let us understand how SEH Based Buffer Overflow works.
The following is the pictorial diagram of the working of SEH
Based Buffer Overflow.

Figure. SEH Based Buffer Overflow

Our goal at this point is to successfully overflow the buffer,
and overwrite the SHE and nSEH that would point towards
our shellcode thus executing it.

The OS walks the SEH Chain and each Exception Handler
(SEH) is checked to see if it can handle the exception (by
calling the exception callback function and examining the
details found in the exception and context records). If not,
Exception Continue Search is returned and it moves to the
address of the next record (pointed to by Next SEH) and
continues down the chain until it finds a suitable exception
handler or hits the last, default handler(FFFFFFFF).

5. MITIGATION AND RECOMMENDATION

● Windows

Since, security have become the most important part from an
organization point of view. Security Measures must be taken
to ensure our data are secure and is private. Below are some
of the security measures that should be taken for the
protection from the Buffer Overflow attack.

The following are the techniques that are discussed below:

● DEP - DEP stands for Data Execution Prevention.
DEP is a security feature within the Operating System that

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3577

helps to prevent damage from security threats and virus by
preventing malicious code from running on the system. Since
harmful Programs try to attack Windows by running
malicious code from the memory.

Thus, to solve this issue Windows introduced DEP, which
marks all these memory locations as non-executable. In
short, we need to remember that DEP will make it
significantly harder to run exploits from the memory. For the
Security purpose we should enable DEP from the Server side
to protect the Server.

Visit the following link to view in detail:
https://radiojitter.wordpress.com/2018/04/17/buffer-
overflow-mitigation-part-6/

● ASLR

ASLR is used to for the security purpose, which involves the
randomization of the base address of an executable and the
position of stack, heap in a process address space. The
randomization of the memory address gives an advantage of
not knowing the location of actual required address. Thus it
does not remove the vulnerability from the system but
makes it more challenging for an attacker to exploit this
vulnerability.

Visit the following link to view in detail:
https://radiojitter.wordpress.com/2018/04/17/buffer-
overflow-mitigation-part-6/

● SafeSEH

SafeSEH is a protection mechanism introduced by Windows
in which exception handlers are validated, registered and
stored. To ensure it is safe the addresses are checked prior to
executing a given exception handler. A POP+POP+RET
address comes from a module compiled with SafeSEH that is
used to overwrite an SEH record and will not appear in the
table and the SEH exploit will fail. To prevent SHE based
attacks SafeSEH is very useful and effective.

Visit the following link to view in detail:
https://radiojitter.wordpress.com/2018/04/17/buffer-
overflow-mitigation-part-6/

● Stack Cookies/GS protection

The stack cookies will only be added by the compiler to
minimize the impact of the performance, if string buffer is
there in the functions or using _allocate is used to allocate
function in the stack. If the buffer contains 5 bytes or less the
protection is not activated.

In a buffer overflow attack, we attempt to overwrite the EIP
with the address of our shellcode. But before the EIP is
overwritten with our data, the cookie is overwritten as well,
thus resulting the exploit useless. Thus the application dies
once the function epilogue finds that the cookie is changed.

4. CONCLUSION

In this paper, we explored on how the Stack Based and SEH
Based buffer overflow actually works. It is not only a
programming error, but can also be exploited to execute
arbitrary code on the system. Security Measures are also
provided in this project to safeguard from the attack.

ACKNOWLEDGEMENT

I take this opportunity to express my deep gratitude and
appreciation of all those who encouraged me to successfully
complete the journal.

With profound sense of gratitude and regards, I acknowledge
with great pleasure the guidance and support extended by,
Mr. Priyashloka Arya from RadioJitter Concept Labs for his
accomplishment and valuable information, direction and
sense of perfection to work. He had been main source of
inspiration for completion of work and strengthening
confidence.

I would also thank my parents for their understanding &
encouragement, my friends, one and all those who supported
me and helped me.

REFERENCES

[1] Attacks and Defenses for the Vulnerability of the Decade

[2] Stack Based Overflow: Detect & Exploit, Morton
Christiansen

Sites Referred:

● https://www.corelan.be/index.php/2009/07/19/e
xploit-writing-tutorial-part-1-stack-based-
overflows/

● https://www.corelan.be/index.php/2009/07/23/w
riting-buffer-overflow-exploits-a-quick-and-basic-
tutorial-part-2/

● https://www.corelan.be/index.php/2009/07/25/w

riting-buffer-overflow-exploits-a-quick-and-basic-
tutorial-part-3-seh/

● https://radiojitter.wordpress.com/2018/04/16/bu

ffer-overflow-exploit-part-1/

● https://radiojitter.wordpress.com/2018/04/17/bu
ffer-overflow-mitigation-part-6/

https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/
https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
https://radiojitter.wordpress.com/2018/04/16/buffer-overflow-exploit-part-1/
https://radiojitter.wordpress.com/2018/04/16/buffer-overflow-exploit-part-1/
https://radiojitter.wordpress.com/2018/04/17/buffer-overflow-mitigation-part-6/
https://radiojitter.wordpress.com/2018/04/17/buffer-overflow-mitigation-part-6/

