
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3507

Implementation of High Computational Model Using Splitting and

Concatenate Approach on Raspberry Pi

Miss. Pallavi Khude1, Tejashree Solanki2, Pooja Panhale3, Yuvraj Sawant4, Gauri Mane5

1,2,3,4,5 Department of Computer Engineering, Pune/D.Y.Patil College Of Engineering Akurdi
---***---

Abstract – The technologies of persistent memory, like as
RAM and Hard Disk, provide opportunities for preserving files
in memory. Traditional file system structures may need to be
re-studied. Even though there are several file systems proposed
for memory, most of them have limited performance without
fully utilizing the hardware at the processor side. The
processes running concurrently on these processors are
continuously competing for the shared resources, not only
among cores, but also within the core. While resource sharing
increases the resource utilization, the interference among
processes accessing the shared resources can strongly affect
the performance of individual processes and its predictability.
In this scenario, process scheduling plays a key role to deal
with performance and fairness. In this work we present a
process scheduler for IOT processor that simultaneously
addresses both performance and fairness. This is a major
design issue since scheduling for only one of the two targets
tends to damage the other. To address performance, the
scheduler tackles bandwidth contention at the cache and main
memory of IOT. To deal with fairness, the scheduler estimates
the progress experienced by the processes, and gives priority to
the processes with lower accumulated progress. Our System
framework based on a new concept i.e. Data Transmission
based on Space Utilization Concept" using Splitting and
Concatenate Approach.

Key Words: Concurrency, Multiprocessing, Scheduling,
Synchronization, Main memory, File organization,
Network communication, Distributed file systems .

1. INTRODUCTION

In this work, we deal with efficient load balancing between
the different resource nodes that process the client tasks, in
a secure way as well as the elimination of possible single
point of failure in a semi centralized load balancing
architecture. To ensure that the two fundamentals i.e. co-
ordination(the right things) and synchronization(the ideal
time)of the processes will be executed we use
synchronization algorithms. With such synchronization
algorithms security will be provided to the data while
transmission. This leads to less time consumption as the
tasks are been executed concurrently.

Our System is a mixture of distribution model for P2P
network. Data Sharing System, which has attracted the
largest number of users, is the main application scheme for
P2P file sharing. In broadcasting network, a single file is
shared by numerous clients. The global data(files) to be
transmitted is divided into Chunks(i.e. breaking the files into

pieces) using chunking mechanism. The chunks can be of
fixed size or variable size. All the parts connects to a central
node called tracker to get a list of parts. Once all the
distributed pieces are obtained at single location then whole
data is successfully broadcasted to destination path.

2. System Description:

Input: Collection of Bundles of different kinds of file data.

Output: Efficient Storage utilization on remote storage.

Content verification object: Here the user's personal
details like contact number and other information is verified
first.

Acceptance object: The data entered by the user is being
accepted by the system and stored in the database.

Termination and Clearance object: If the data is verified
and accepted the registration is terminated by the submission
option otherwise if the user want to edit the information
he/she can select the clear option.

Unique key verification object: User need to enter
username and password and then authentication of the
credentials will be done whether the user is authorised user
or not.

Splitting object: It converts the information into number of
blocks with the help of splitter.

Concatenation object: It converts Split Blocks into combine
block.

Memory object: In this, memory blocks management is
processed in multi core system.

1.3 Hardware and Software Specifications

Hardware Resources Required

(a) Hardware : Dual Core or any multicore processor

(b) Speed : 1.1 Ghz minimum

(c) RAM : 1 GB or More

(d) Hard Disk : 80 GB

(e) Connector : RJ45 for LAN connectivity

(f) Key Board : Standard Windows Keyboard

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3508

(g) Cable : LAN cross connected cords

(h) Monitor : CRT/TFT

Software Resources Required

(a) Operating System : Windows

(b) UI Technology : Swing and AWT Components

(c) IDE : My Eclipse

(d) Java Version : J2SDK1.5 or later

(e) Network : Ad-HOC(Wireless) or TCP-IP(Wired)

(f) Database : MySQL

(g) Technology : Java, JZEE

(h) External Tools : CPUZ and HWMonitor

3. Implementation

Chunking Approach

Chunking refers to an methodology for making more
better use of short-term memory by grouping information.
Chunking breaks up long information into units or chunks.
The resulting chunks are easier to commit to memory than a
longer uninterrupted string of information.

Chunking is used most commonly to organize or classify
large amounts of information, even when there are no
obvious patterns.

Chunking can be performed using two approaches:

Fixed-Size Chunking:

Fixed-size chunking method splits files into equally sized
chunks. The chunk boundaries are based on offsets like 4, 8,
16 kb, etc. [11, 12]. This method effectively solve issues of
the file-level chunking method: If a huge file is altered in only
a few bytes, only the changed chunks must be reindexed and
moved to the backup location. However, this method creates
more chunks for larger file which requires extra space to
store the metadata and the time for lookup of metadata is
more.

Variable Size Chunking:

The files can be broken into multiple chunks of variable sizes
by breaking them up based on the content rather than on the
fixed size of the files. This method resolves the fixed chunk
size issue. When working on a fixed chunking algorithm,
fixed boundaries are defined on the data based on chunk size
which do not alter even when the data are changed.
However, in the case of a variable-size algorithm different
boundaries are defined, which are based on multiple
parameters that can shift when the content is changed or
deleted. Hence, only less-chunk boundaries need to be

altered. The parameter having the highest effect on the
performance is the fingerprinting algorithm.

Fig 1: Chunking Methodologies

Security Mechanism:

Encoding:

For security purpose a simple approach is used that is Bit
Rotation Algorithm(BRA).

Step1: Chunk the data using variable or fixed size chunking.

Step2: Use BRA that means just shuffle the bits from their
original position.

Step3: Transfer the chunks

Decoding:

The exact opposite approach is performed to get the
required data chunk.

Step1: Shuffle the bits in their original position.

Step2: Original Data chunks received

GUI of the System

Fig: 2 Shows the Representation of the system which copies
a file from the source to destination. It also makes use of the
splitting and concatenating approach to finish its task. The
main aim of this was to optimize the memory Functionality
of processors having small size

Fig 2: GUI of System

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3509

Splitting and Concatenate Approach:

Splitting approach includes chunking the file to be
transferred equal to the memory available in the hard disk.

Concatenate approach includes when the hard disk memory
becomes free the splitted file chunks are merged into one
file.

Input:

All types of files can be taken as input for this system.

Output:

Proper memory optimization of Raspberry Pi is the goal.

4. Architecture Design:

Fig3: Architecture design

5. Analysis Results of the System:

Fig 4: Analysis Result 1

Fig5: Analysis Result 2

6. CONCLUSIONS

In our paper we have considered the buffered approach to
transfer the data from one destination to another. The data
can be of any type be it application files, Audio , Video, Text ,
Images ,Pdf, etc. Since it’s a buffered approach the
computation time required is reduced to minimum possible
milliseconds. We have used splitting and concatenation
mechanism which uses chunking algorithm to efficiently
solve the problem of space utilization. This obtains all
memory blocks available for data sharing and hence data de-
duplication is obtained. Using our new data structure, the
data owner can perform insert, modify or delete operations
on file blocks with high efficiency. Bit Rotation Algorithm is
used for providing encryption and decryption facility while
performing the transfer which is optional.

 The future scope of the project can be enhanced by
using our application for space utilization in cloud database
management.

REFERENCES

[1] Bart Jacob, (June 2003),TSO Redbooks Project Leader,
IBM,"Grid computing: What are the key components? -
Taking advantage of Grid Computing for Application
Enablement".

[2] Baru, C., Moore, R., Rajasekar, A. and Wan, M., (1998),
“The SDSC Storage Resource Broker. 8th Annual IBM
Centers for Advanced Studies”.

[3] Venish and K. Siva Sankar,(2016) , “Study of Chunking
Algorithm in Data Deduplication” , Proceedings of the
International Conference on Soft Computing Systems,
Advances in Intelligent Systems and Computing 398.

[4] Beynon, M., Kurc, T., Catalyurek, U., Chang, C., Sussman,
A. and Saltz, J. (2001) , “Distributed Processing of Very
Large Datasets with Data Cutter”. Parallel Computing, 27
(11). 1457-1478. International Journal of Grid
Computing & Applications (IJGCA) Vol.2, No.4, December
2011 61.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3510

[5] Kurc, T., Catalyurek, U., Chang, C., Sussman, A. and Saltz,
J. (2001), “Exploration and Visualization of Very Large
Datasets with the Active Data Repository”. IEEE
Computer Graphics & Applications, 21 (4). 24-33.

[6] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and
Tuecke, S, (2001), “The Data Grid: Towards an
Architecture for the Distributed Management and
Analysis of Large Scientific Data Sets”, J. Network and
Computer Applications (23). 187-200.

[7] Foster, I. and Kesselman, C. (2001), “A Data Grid
Reference Architecture”, Technical Report GriPhyN-
2001-12.

[8] Stockinger, H., Samar, A., Allcock, B., Foster, I., Holtman,
K. and Tierney, B, (2002), “File and Object Replication in
Data Grids”. Journal of Cluster Computing, 5 (3). 305-
314.

