
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2654

An Intrusion Detection System for SQL Injection Attack on SaaS

applications

Prashanth C1, Nithin R2, Prajwal Naresh3, Shobhitha G4

1,2,3 &4Department of Computer Science and Engineering Global Academy of Technology, Bangalore, Karnataka,
India.

---***---
Abstract - At the present time where there is a huge increase
in demand for computation and storage of data, Cloud
Computing has emerged as the front runner in providing a
very inexpensive and easy solution. It is because of the
Software as a Service (SaaS), it has eradicated physical servers
and applications being stored on-site. This basically means
that server management responsibility is with an outsourced
provider and we just have to subscribe to the SaaS
applications to use it. But since user data will be in the hands
of the outsourced provider we are having a huge number of
attack. The most sought-after method used to expose the
vulnerabilities is the SQL injection attack (SQLIA). SQL
injection attacks allows attackers to spoof their identity,
tamper with the existing data, allow the complete disclosure of
all data on the system, destroy the data or make it otherwise
unavailable, and also become administrator of the database.
The proposed framework acts as a filter mechanism between
the SaaS application and the database server. An intrusion
detection system(IDS) is established which checks the query
retuned by the application is malicious(Backlist) or not. To
achieve this query validation, we propose an algorithm to
check the query for proper syntax, proper grammar and it
checks for all known SQLIA queries. The IDS is deployed in the
live cloud, so any SaaS applications can just use this service as
a plugin.

Key Words: Software as a Service(SaaS), SQLIA, IDS,
Blacklist, Cloud

1. INTRODUCTION

The computing with rapid changes in the whole processing
and storage technologies and the success in the
communication networks such as Internet has decreased the
overall cost of the computing resources, more efficient and
even more ubiquitously available. This technological
modification has enabled the development of a new
computing paradigm known as cloud computing, in which
resources are shared by multiple system over the
communication network. Cloud computing is nothing but a
set of services that are provided to a the end customers over
a medium maybe network on a rental basis and with the
power to scale up or down their service necessities. Cloud
computing services are delivered by a 3rd party provider
who owns the complete infrastructure. Cloud computing has
turned up as a brand-new model for hosting and delivering
services over the net. Cloud computing becomes an
attraction within the business world because it doesn’t need
to set up a provision and business may be established with a

small amount. In cloud computing, services are shared over
the communication network that is. Internet. In conception
of cloud computing multiple computers will access services
and data which is stored on the Cloud. So that the overall
expense for installation of the software and cost for
maintenance is thus reduced because there is no need of
installing on each end user's computer and might be
accessed from different places.[1] The age old definition of
cloud computing that it is a model for enabling convenient
and on-demand network access to shared pool of
configurable computing resources for example, networks,
applications, servers, storage, and services that can be
rapidly provisioned and also released with minimal
management effort or any service provider interaction. Let
us consider, an associate of any organization needs to make
sure that every worker of the company has the right
software and hardware to do their job. To shop for new
computers and install software on each system is expensive.
Hence, using a service cloud is an easy way to store all
required resources of the company so that each of the
employees can access the resources whenever in need.

The glory of net and its merits are being extremely cloaked
by the downside associated with it. Of all the major threats is
the Internet Vulnerability which leads to data modification
and data thefts. Many web applications store the data in
these databases and retrieve and update information
whenever needed. Hence these applications are extremely
vulnerable to several varieties of attacks, one of them being
SQL injection Attacks(SQLIA). SQL injection attack occurs
when an attacker causes the web application to generate SQL
queries that are functionally different from what the user
interface programmer intended. For example, consider an
application which deals with author details.

select ID, fname, lname from authors;

This statement will retrieve the ‘id’, ‘fname’ and ‘lname’
columns from the ‘authors’ table, returning all rows in the
table. The ‘result set’ could be restricted to a specific ‘author’
using ‘where’ clause.

select id, fname, lname from authors where fname =
'Mark' and lname = ‘Lisa’;

An important point to note here is that the string literals
‘Mark’ and ‘Lisa’ are delimited with single quotes. Here the
literals are given by the user and so they could be modified.
They become the vulnerable area in the application. Now, to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2655

drop the table called ‘authors’, a malicious literal can be
injected into the statement like

fname: Mar'; drop table authors-- lname:

Now the statement becomes,

select id, fname, lname from authors where fname =
'Mar’; drop table authors-- and lname = ' ';

and this will be the query executed

Since the first name is ending with a delimiter ‘ and - - is
given at the end of the input, all the remaining commands
following - - is neglected as it will be commented out. The
output of this command will be the deletion of the table
named ‘authors’, which is not the exact intended result from
the server database.

The main objective of this paper is to handle SQL injection
attack in any form. SQLIA can be done by using the input
form or even from the URL, considering all the new
techniques used for evading signatures.

2. RELATED WORK

The SQLIA is divided into three types which are the in band,
out of band and the inference attack [8]. Here in the in-band
attack, it is nothing but the process of extraction of
information over similar channels in between server and
client. The out of band attacks are the ones which do not
work on the same channel but instead they have distinct
channels to retrieve the data. The Inference attack involves in
the process of intentionally waiting for an error message
from the server side or either by invoking an error message
as a return parameter from the server, thus giving the
complete information of the server and also giving access to
the complete database. In this paper, the author has
discussed how the data could be collected using the inference
method.

The usual Static code checkers in the current world like the
JDBC-checker [7] is a unique method for statically checking
all the typo mistakes of a dynamically generated SQL query.
But the main drawback of this is it is going to find out only a
single SQL vulnerability which is caused by the improper type
checking mechanism of the input.

There is another model called the combined static and
dynamic analysis for example, AMNESIA [4]. It is considered
as a model-based technique. AMNESIA combines both the
static analysis of the query and the runtime-monitoring. The
motivation to build this approach is mainly because of two
reasons. It is because the source-code contains information
which is enough to infer models of the expected, syntactically
correct SQL queries generated within the application. And,
because the SQL injection Attack, by injecting the extra SQL
statements into the queries, will violate the whole model. The
AMNESIA works with its static part deployed in constructing
a model of correct queries that could possibly be generated

by the application by using various techniques of program
analysis. Whereas the dynamic part, the AMNESIA
monitors all the dynamically generated queries at run-time
and validates the queries for compliance with the statically
generated model.

Even with vast variety of the SQL detection system the rise of
SQL injection attacks has not been cut down. Recently in
India, A famous French Security researcher by the name Elliot
Anderson exposed BSNL. This was an SQL Injection Attack
and it exposed data of 47000 employees. This is one of the
latest attack which was exposed on March 4th, 2018 [16].
Hence it is correct to say that almost all the dangerous threats
out there involve some sort of SQL injection attack down the
line.

The existing system has several limitations such as security
measures are provided only for PAAS and SAAS, but not for
IAAS [5], all of them requires a costly analysis and
modifications of the source code, and solution applies only for
specific language or environment

3. PROPOSED SYSTEM

In this paper, a framework called as SQL Intrusion Detection
System, is proposed which detects SQL injection targeting
software applications deployed in public IaaS cloud
providers. Reusable by any IaaS providers, proposed solution
is language independent and the solution doesn’t require any
modification to the source code.

3.1 System Architecture

Any application running on IaaS will have its own database.
The application will be used by both users and the attacker.
A framework SQLIIDaaS is used to provide security to this
Application. This framework is accessed through a Web
Service.

Fig-1: System Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2656

3.2 System Design

Major divisions in this paper are

A. Data Access Layer

Data access layer is the one which exposes all the possible
operations on the data base to the outside world. It will
contain the DAO classes, DAO interfaces, POJOs, and Utils as
the internal components. All the other modules of this
project will be communicating with the DAO layer for their
data access needs

B. Account Operations

Account operations module provides the following
functionalities to the end users of our project.

Step 1: Register a new seller/ buyer account

Step 2: Login to an existing account

Step 3: Logout from the session

Step 4: Edit the existing Profile

Step 5: Change Password for security issues

Step 6: Forgot Password and receive the current password
over an email

Step 7: Delete an existing Account

Account operations module will be re-using the DAO layer to
provide the above functionalities.

C. Web Service Module

The SQL intrusion injection detection process will be
implemented as a web service. This module will be used by
the admins of SQLiiD admins to get the endpoint of the
SQLiiD service. The admins can then use this module for
performing email campaigning to various customers. The
customers will be receiving an email with the end URL to
access the SQLiiD web service along with their passcode.

D. Pay as you go

This module is used by the SQLiiD admins for billing the
customers based on their usage on the SQLiiD web service.
The SQLiiD webservice, whenever invoked by the customer
will be checking for the authorization. If it passes, it executes
the core algorithm to analyze the inputted SQL string to
determine if it’s safe to execute on the customer database or
not. The entry will be made on the pay as you go module
database indicating that the user has invoked the service.

E. Results and Reports

This module will be used by the SQLiiD admins to view the
results and reports of various webservice calls to the SQLiiD

by the customers. The results and reports include the client
identifier who invoked the service, the timestamp at which
the service was invoked, the SQL string against which the
algorithm was been invoked, and the detailed report
indicating whether it’s safe to execute the SQL sting on the
customer database.

F. Sample Application

This application is developed only for demonstration
purpose to show how the customers will be using our SQLiiD
web services to analyze their SQL string for SQL injection
detection.

4. IMPLEMENTATION

Fig-2: Data Flow of the application

We basically have two applications one being the client-side
end user application and the other is the administrator
application.

4.1 Implementation of the administrator module

Fig-3: Pay as You Go

Here the client through the Web Application will access all
the basic Profile operations. Firstly, Registration and
authentication is done to get the data of the client who is
going to use the service. Then the admin can invite other
clients to use the service. With the help of Pay as You go and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2657

reports the admin can track all the usage statistics of his/her
end users.

4.2 Implementation of the client module

Here the invite is received from the admin and we get a portal
access to this IDS. So, whatever the input query given in the
client application will be reviewed once by this application
and then given the result whether the query is safe or not.
Only after the query is validated it gives access to the
database.

Fig-4: Malicious Query

4.3 PsuedoCode

We basically have three filter mechanisms in the algorithm.

First is the grammar checking phase wherein we check for
the syntax correctness of the sql query. It makes sure the
query inputted is always starting with parenthesis and
quotes. If the query doesn’t comply with it, it rejects.

Then we have the Whitelist checking phase. Here the query is
matched for syntactic errors in a sql query. Let us consider
the example

SELECT DISTINCT City FROM Customers;

Here “SELECT”, “DISTINCT” and “FROM” are whitelist
literals. So, it checks if these literals are present. If it is
present, then it passes on to Black List checking phase.

The Black List checking phase is the one which checks for
malicious queries present in the query. If there are any
uncommon letters used or if there is any special character, it
rejects. Let us consider the following example

SELECT * FROM users WHERE username='admin' AND
password='' OR 1=1--'

Here the username is accepted but the password is made true
“1=1” for all the values. Hence whatever may be the real
password, it retrieves all the data.

There is also method wherein the code present inside the
database is commented out. Hence the whole code will be
altered. So, keeping all the usual hacking techniques we have
devised a blacklist which contains all the possible hacking
techniques by query mapping.

And for all the checking phase we increment our Pay as You
go Module because the customer would have anyhow used
the service. The time is also recorder to give the reports for
the admin in the later stage.

Black List Checking ()

begin

read (SQl Query);

res<-compare (SQLQuery, RE); /*Check for some

 malicious SQL statement*/

if (res==true) then

PayAsYouGo<- PayAsYouGo+1;

insert (time recorded, SQL syntax, status) in report;

return false;

break;

end if

else if (res==false) then

PayAsYouGo<- PayAsYouGo+1;

insert (time recorded, SQL syntax, status) in report;

return true;

break;

end if

end

5. CONCLUSION AND FUTURE WORK

 The proposed SQL injection intrusion detection framework
allows a SaaS provider to detect sql Injection attack targeting
several SaaS applications without reading, analyzing or
modifying the source code. A SaaS provider can subscribe to
this framework and launch its own set of virtual machines,
which holds on-demand self-service, resource pooling, rapid
elasticity, and measured service properties

Future work would be to make SQLIIDaaS fully as a service
from tenant’s point of view by ensuring on-demand self-
service and pay-as-you-go characteristics. We could have an
option of sending an alert notification to the client whenever
this service is being used. A provision could be made to make

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2658

the intrusion detection system fully as a service from
tenant’s point of view by ensuring on-demand self-service
and pay-as-you-go characteristics with the help of API’s we
can have a lesser complexity and more visibility of availing
the service

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud
computing,” National Institute of Standards and
Technology.Special Publication 800- 145, pp. 1–7, 2011.

[2] V. Varadharajan and U. Tupakula, “Security as a service
model for cloud environment”, Network and Service
Management, IEEE Transactions on, vol. 11, no. 1, pp.
60–75, 2014.

[3] S. Curtis, “Barclays: 97 percent of data breaches still
due to sql injection,”
http://www.techworld.com/news/security/barclays-
97-percentof- data-breaches-still-due-sql-injection-
3331283/, 2015.

[4] W. G. J. Halfond and A. Orso, “Preventing SQL injection
attacks using AMNESIA,” Proceeding of the 28th
international conference on Software engineering - ICSE
’06, pp. 1–4, 2006.

[5] Yassin M., Ould-Slimane H., Talhi C. & Boucheneb H.
(2017, June). “SQLIIDaaS: A SQL injection intrusion
detection framework as a service for SaaS providers”. In
Cyber Security and Cloud Computing (CSCloud), 2017
IEEE 4th International Conference on (pp. 163-170).
IEEE.

[6] S. Bandhakavi, P. Bisht, P. Madhusudan, and V.
Venkatakrishnan, “Candid: Preventing sql injection
attacks using Dynamic candidate evaluations,” In
Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS), no. October, pp.
12–24, 2007.

[7] C. Gould and P. Devanbu, “JDBC checker: a static analysis
tool for SQL/JDBC applications,” Proceedings. 26th
International Conference on Software Engineering, pp.
697–698, 2004

[8] David Litchfield, (2005) “Data-mining with SQL Injection
and Inference”, Next Generation Security software Ltd.,
White Paper.

[9] Zhendong Su and Gary Wassermann, (2006) “The
Essence of Command Injection Attacks in Web
Applications”, Proc. ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages ’06, pp.372-382.

[10] Chip Andrews, “SQL Injection FAQs”,
http://www.sqlsecurity.com/FAQs/SQLInjectionFAQ/ta
bid/56/Default.aspx

[11] Yonghee Shin and Laurie Williams, (2008) “Toward A
Taxonomy of Techniques to Detect Cross-site Scripting
and SQL Injection Vulnerabilities”, NC state Computer
science: Technical report.

[12] Stephen Kost, (2004) “An introduction to SQL
injection attacks for Oracle developers”, Integrity
Corporation, White paper.

[13] Burp suite, http://portswigger.net/burp/

[14] https://www.cisco.com/c/en/us/about/security-
center/sql-injection.html

[15] https://en.wikipedia.org/wiki/SQL_injection

[16] https://www.itwire.com/security/81964-french-
researcher-finds-flaws-in-site-of-indian-state-owned-
telco.html.

BIOGRAPHIES

Prashanth C
B.E. (Computer Science)
Global Academy of Technology
Research Area: Cloud Computing
and Web Development

Nithin R
B.E. (Computer Science)
Global Academy of Technology
Research Area: Business
Intelligence and Big Data

Prajwal Naresh
B.E. (Computer Science)
Global Academy of Technology
Research Area: Networking

Shobhitha G
B.E. (Computer Science)
Global Academy of Technology
Research Area: Business Analysis

