
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 05 Issue: 04 | Apr-2018                      www.irjet.net                                                                 p-ISSN: 2395-0072 

 

An algorithm for solving cost time trade-off pair in quadratic fractional 
transportation problem with impurity restriction  

 
Nidhi Verma Arya1, Preetvanti Singh2  

 
1,2 Department of Physics and Computer Science,  

Faculty of science Dayalbagh Educational Institute Dayalbagh, Agra, India 
---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - In many real life transportation situations like 
industries of coal, iron and cement. The commodity does vary 
in some characteristics according to it source. The final 
commodity mixture reaching the various destinations may 
then be required to meet known specifications. It has also been 
observed that time of transportation is as important as cost of 
transportation. Generally the optimal solution for time 
minimizing transportation problem may not be unique and a 
number of transportation solutions will consume the same 
optimal time of transportation. So out of these solutions it is 
quite difficult to choose best solution with respect to second 
criteria i.e. the transportation cost. This gives rise to the 
problem of obtaining cost and time trade-off pair. Cost-time 
trade-off problems have been studied for a number of linear 
transportation problems. The focus of this paper is to develop 
an algorithm for generating trade-off pairs between cost and 
time for quadratic fractional transportation problem with 
impurity restriction. The algorithm will generate all the 
solutions which are pareto optimal with respect to 
transportation cost and the transportation time.  
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1. INTRODUCTION  
 
Optimizing transportation problem has a significant role in 
real-life situations. Different variants of this problem is 
available in literature. Quadratic transportation problem is a 
special type of Quadratic programming problem which can 
be stated as a distribution problem where each of the m 
suppliers can ship units to any of the n customers at cost 

) and where  is a quadratic function of  the amount 

shipped from source i to destination j. The objective of the 
Quadratic transportation problem is to minimize the total 
transportation cost while meeting demand at the 
destinations. Transportation problem with fractional 
objectives occur in many real-life situations where the 
objective function includes optimization of ratio of total 
actual transportation costs to total standard transportation 
cost, total return to total investment, ratio of risk assets to 
capital etc. A Transportation problem with fractional 
objective function was investigated by Charles, Yadavalli, 
Rao, & Reddy (2011) as a stochastic programming model, 
while considering ratio of two non-linear functions and 
probabilistic constraints. Sivri, Emiroglu, Güzel & Tasci 
(2011) dealt with the transportation problem of minimizing 
the ratio of two linear functions subject to constraints of the 

convention transportation problem. Gupta & Arora (2013) 
studied linear plus linear fractional capacitated 
transportation problem with restricted flow. Khurana & 
Arora (2013) formulated a transportation problem with an 
objective function as the sum of a linear and a linear 
fractional function with restricted enhanced flow. The linear 
function represents the total transportation cost incurred in 
shipping goods from various sources to the destinations and 
the fractional function presents the ratio of sales tax to the 
total public expenditure. Das, Mandal & Edalatpanah (2017) 
proposed a new approach for solving fully fuzzy linear 
fractional programming problems using the multi-objective 
linear programming. Time transportation problem is an 
important problem from the practical point of view and its 
study is of great interest. Chakraborty & Chakraborty (2010) 
proposed a method for the minimization of transportation 
cost as well as time of transportation. Singh (2012) 
developed a procedure for providing the optimal solution to 
quadratic time transportation problem. An algorithm was 
developed by Uddin (2012) to determine the minimum 
transportation time. Quddoos, Javaid, Ali, & Khalid (2013) 
considered a bi-objective transportation problem, where the 
total transportation cost and delivery time was minimized. 
These problems consider optimization of only one objective 
cost or time. However in real-life problems the trade-off 
between cost and time also plays an important role. Li, Shi & 
Jhao (2001) proposed a method for time-cost trade-off in a 
transportation problem with multi-constraint levels. Basu, 
Pal & Kundu (2007) developed an algorithm for the time-
cost trade-off in fixed charge bi-criterion transportation 
problem. An algorithm for finding time-cost trade-off pairs in 
generalised bi-criterion capacitated transportation problem 
was presented by Das, Acharya & Basu (2015). Sharma & 
Arora (2017) discussed modification on a cost pipeline 
trade-off in a transportation problem. In the present a new 
type of optimization problem is considered by integrating 
quadratic transportation problem, fractional transportation 
problem, time transportation problem and impurity 
restriction. In some practical applications, the product varies 
in some features according to its source. The final product 
mix, received at destinations, may then be required to meet 
known specifications. For example, crude ore contains 
different amounts of phosphorus impurity, according to its 
source and the actual time to process the ore depends on 
both its source and destination. This type of transportation 
problem is studied by Haley and Smith (1966), and Saxena, 
Singh & Saxena (2013).  
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1.1 The quadratic fractional transportation with 
bottleneck time and impurity restriction (QFTTPI) 
 
This section presents the formulation of the quadratic 
fractional time transportation problem. The objective 
function is quadratic and fractional with linear constraints. 
The mathematical formulation of the problem is as follows: 
Let there be M sources and N destinations.  
be the quantity of the commodity available at the ith source 
and  be the quantity of commodity required 

at the jth destination.  be the amount of the commodity 

transported from the ith source to the jth destination. Let C= 
], and D= ]  be the two (M×N) cost matrices and E= 

[  be a (M×N) time matrix. is the unit actual shipping 

cost,  is the unit standard shipping cost.  be the shipping 

time of the commodity from the ith source to the jth 
destination, and is independent of the commodity 
transported for ≥ 0.  denotes the units of P impurities 

(k=1,…, P) that one unit of the commodity contains when it is 
sent from ith source to jth destination. Destination j cannot 
receive more than units of impurity. α, β are scalars and 

constants. The problem is to find a trade-off between two the 
objectives, the total shipping cost ratio Z and earliest 
shipment completion time T, over the entire range of the 
feasible solutions, where Z and T are stated as:  

 

 
subject to constraints 
 

 
 
In this problem the quadratic transportation problem with 
objective function as (1) and constraints (3) to (6) will be 
denoted by Q. 
 
Here 
 

 
 

There are a total of MN+NP variables including slacks and 
NP+M+N equations. By imposing conditions on  the  and 
the , one of the equations (3) and (4) is dependent and so a 

basic feasible solution will consist of NP+M+N-1 basic 
variables.  
 
The impurity restriction can be written as: Where 
 

 
 

are the slack variables to impurity restrictions. 

 

2. Methodology and the algorithm 
 
In this section, an algorithm is developed for finding all 
optimal schedules with earliest shipment completion times 
less than successively till no other feasible schedules are 

to be found on the permissible routes, where 
 
The set of positive variables in the k th optimal solution and 

 is one of the K alternative optimal 

solutions with optimal value to the problem Q. Any 

transportation schedule with minimum cost ratio cannot 

have completion time less than  and any transportation 

schedule which is completed earlier than time   will have 

cost ratio more than . 

 
Definition 1- T is said to be a feasible time for the problem 
Q, if there exists a feasible solution X for the problem Q, with 

. Otherwise, T is said to be an infeasible time for the 

problem Q. 
 
Definition 2- A solution pair  is said to be an efficient 

solution pair (or pareto-optimal solution pair) if there exists 
no other solution pair (Z,T) such that 
 
(i)   and  

 or (ii)  and  

 
Denote initially Q,  , and  by and  

respectively.  
 

 
 

3. The  algorithm to solve QFTTPI is given below 
 
The stepwise description of the algorithm is now as follows: 
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Step 1:  Determine optimal solution   to the 

problem 0Q using the following sub-steps: 

Step 1a: Find the initial basic feasible solution to the problem 

0Q by the method of Singh and Saxena [2]. 

Step 1b: Determine the dual variables  and 
1

ijw , 

2

ijw such that 

 
for all basic cells. 
 
Step1c: Evaluate 
 

 
 
For all non-basic cells. Where 
 

 
 
And =  and =  

Step 1d: If for non-basic variables, all  , , 0M k j   

current basic feasible solution is optimal which implies going 
to Step 1 (g). Otherwise go to Step 1 (e) to improve the 
solution. 
 

Step 1e: Choose the most negative of the which ij ; ,M k j  

which may be designed by 
0 0i j or 

0 0,M k j  and determine 

the variable 
0 0i jx or 

0 0,M k jx  which is to enter. The variable 

0 0i jx or 
0 0,M k jx  then becomes a basic variable of the new 

basic feasible solution. 
 
Step 1f:  Change the current solution to the new basic 
feasible solution using equations [11]: 
 

 
 

Furthermore, the values of the variables in the updated basic 
feasible solution are given by ; 

. Choose a suitable value of  from 

 





















syM

syM

rs

rs

n
n n

x

n

x

syM

rs
,

,

0
;min

0,

  

 
(23) 

 

  and go to step 1b. 

Step 1g: The optimal solution gives the optimal 

transportation schedule   

 

Step 2: Obtain 
*

0Z  and
*

0T . Note that in case problem 0Q  has 

alternative optima,  
*

0T  will be computed from equation 

(10), otherwise  

                     

 * *

0
( , )

max / 0ij ij
i j

T t x   

  
 
(24) 
 

Now use the same notation, that is, 
*X for those alternative 

optima, (in case there is one) for which 
*

0T has been 

computed by equation (10). 
 
Step 3: Modify the cost matrices as follows to get the 

problem 1Q : 

   (25) 

 

(26) 

 
For all i and j. 
 

 

 
       (18) 

 

 
       (19) 
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Step 4: Replace  in  by  and  in  by  and use 

the optimal solution   of 0Q  to optimize 1Q . 

Step 5: If Q has a feasible solution for the permissible routes, 
then a new value  and a new value  is obtained such that 

 and .  Continue iterations yielding ( , ), 

( , ),…,till no other feasible solutions are to be found on 

the permissible routes. 
 
4. Case study 
 
The above Algorithm is illustrated with the help of a raw 
material (cement) shipping problem. A cement 
manufacturing unit has different types of cement processing 
sections in each of four work centres (j). The WorkCentre j 
are receiving a fixed quantity of raw material (i), which has 
three different grades. Due to technical reasons, the 
processing time of raw material depends on its grade and the 
workcentres to which it is sent. The problem is to determine 
a feasible transportation schedule which minimizes the ratio 
of total actual shipping cost  and total standard shipping 

cost of raw material , and also minimizes the maximum 

of shipping time  of raw material, while satisfying the 

extra requirement that the amount of sulphur tri-oxide 
impurity present in crude raw material is less than a critical 
level. 
In Table 1,  and  is written on the top left corner of the 

cell. ijt  is shown in upper right corner of the cell. and the 

impurities  are given in the last two columns respectively, 

 and maximum sulphur tri-oxide contents  are shown in 

the last row.  
 

Table 1: Data for the Problem Q0 

 

 
 
 
 
 

 
The optimal solution for problem is shown in Table 2. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
Table 2: Optimal Solution to  

 

c11=
4        
d11=
6 

t11=
5 

c12= 
6    
d12= 
7 

t12=
3 

c13=
4 
d13=
3 

t13=
4 

c14=5 
=

6 

t14=
1 

a1

=7 

p

1

=
0
.
8 

c21=
3 

=

4 

t21=
8 

c22=
5    

=

8 

t22=
4 

c23=
2 

=

6 

t23=
5 

c24=9    
=

15 

t24=
3 

a2

=8 

p

2

=
0
.
8 

c31=
4    

=

5 

t31=
13 

c32=
6 

=

4 

t32=
5 

c33=
3         

=

6 

t33=
8 

c34=6     
=

7 

t34=
11 

 
a3

=5 

p

3

=
0
.
6 

b1=
4 

L1=
0.7 

b2=
10 

L2=
0.7 

b3=
3 

L3=
0.7 

b4=3 L4=
0.7 

 

c11=4        
d11=6 

t11=5 c12= 6    
d12= 7 

t12=3 c13=4 
d13=3 

t13=4 c14=5 
=6 

t14=1 

a1=7 p1=0.8 
x11 
=7/2 

 x12 
=7/2 

  13=112110  14=9898 

c21=3 
=4 

t21=8 c22=5    
=8 

t22=4 c23=2 
=6 

t23=5 c24=9    
=15 

t24=3 

a2=8 p2=0.8 
 21=61206 x22 

=13/2 
  23=40804 x24 

=3/2 
 

c31=4 
=5 

t31=13 c32=6 
=4 

t32=5 c33=3         
=6 

t33=8 c34=6     
=7 

t34=11 

 
a3=5 

p3=0.6 
x31 
=1/2 

  32=40804 x33 =3  x34 
=3/2 

 

x41 
=11 

 x42 = 4  x43 =3   34=202 Z= 0.4473 

b1=4 L1=0.7 b2=10 L2=0.7 b3=3 L3=0.7 b4=3 L4=0.7 
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Table 3: Optimal Solution to  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 

  
 

Table 4: Optimal Solution to Q2 

 

  
Table 5: Optimal Solution to Q3 

c11=4        
d11=6 

t11=5 c12= 6    
d12= 
7 

t12=3 c13=4 
d13=3 

t13=4 c14=5 
=6 

t14=1 

a1=7 p1=0.8 

x11 =4  x12 =3   13=108108  14=10296 

c21=3 
=4 

t21=8 c22=5    
=8 

t22=4 c23=2 
=6 

t23=5 c24=9    
=15 

t24=3 

a2=8 p2=0.8 

 21=58806 x22 =7   23=39600 x24 =1  

c31=M  
=M 

t31=13 c32=6 
=4 

t32=5 c33=3         
=6 

t33=8 c34=6     
=7 

t34=11 

 
a3=5 

p3=0.6 
31=9702M-
19602 

  32=38808 x33 
=3 

 x34 =2  

x41 =12  x42 = 
2 

 x43 
=3 

 x44 =1  Z= 0.4474 

b1=4 L1=0.7 b2=10 L2=0.7 b3=3 L3=0.7 b4=3 L4=0.7 

c11=4        
d11=6 

t11=5 c12= 6    
d12= 7 

t12=3 c13=4 
d13=3 

t13=4 c14=5 
=6 

t14=1 

a1=7 p1=0.8 
x11 =4  x12 

=9/4 
  13=158208 x12 

=3/4 
 

c21=3 
=4 

t21=8 c22=5    
=8 

t22=4 c23=2 
=6 

t23=5 c24=9    
=15 

t24=3 

a2=8 p2=0.8 
 21=63654 x22 

=23/4 
  23=84872 x24 

=9/4 
 

c31=M  
=M 

t31=13 c32=6 
=4 

t32=5 c33=3         
=6 

t33=8 c34=M  
=M 

t34=11 

 
a3=5 

p3=0.6 
31=9682M-
59946 

 x32 =2  x33 
=3 

  34=9682M-
83224 

x41 =12  x42 = 3  x43 
=3 

  44=3811 Z= 0.4743 

b1=4 L1=0.7 b2=10 L2=0.7 b3=3 L3=0.7 b4=3 L4=0.7 
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Here ( , ) = (0.4473, 13) . Redefine the cost matrices as 

follows to get the problem  : 

 

  

 

  

 
The modified cost matrices for is given in Table 3 with the 

resulting optimal solution . 

 

In this case the optimal values are (  = (0.4474, 11). 

Now redefine the cost matrices [ ] and [ ] as follows to 

get the problem  : 

 

  

  
  
for all i and j.  
Table 4 has the new cost matrices for Q2 and also the optimal 

solution . 

 

The optimal values are (  = (0.4744, 8). Again redefine 

the cost matrices [ ] and [ ] as follows to get the problem  

 : 

 

    

for all i and j.  

 

The unique optimal solution  to the problem is shown 

in Table 5. 
 
In this case the optimal values are (  = (0.5804, 5). A 

further modification of cost matrices result in there being no 
feasible solution. Therefore, the algorithm terminates. The 
minimum total cost ratio shipping time combinations, as 
obtained by the algorithm are (0.4473,13), (0.4474, 11), 
(0.4744, 8) and (0.5804, 5) . This gives a picture of the trade-
offs that have been made and are represented in Figure 1. It 
can be seen that a successive reduction in the earliest 
completion time is there at the cost of an increase in the 
minimum  total fuel cost ratio. 
 

 
 

Figure 1: The cost-time trade-off 
 

5. Conclusion 
 
The main objective of this paper is to develop an algorithm 
to obtain the solution frontiers of the cost-time trade-offs in 
the quadratic fractional transportation problem with 
bottleneck time and impurity restriction. The algorithm is 
useful in cases not only where the time-objective is an 
equally crucial factor besides cost ratio, but also when 
analyzing the practicability of an existing transportation 
system. This procedure helps the decision maker by 
eliminating all the inefficient solutions. The developed 
methodology will prove to be useful in making the 
transportation problem formulation more realistic in 
applications areas. 
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