
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2482

Initial Enhancement : A Technique to Improve the Performance of

Genetic Algorithms

Aadhar Gupta

 Uttar Pradesh, India
---***--

Abstract - In a G.A. (Genetic Algorithm) the “number of generations” needed to reach the optimal goal can be dramatically
reduced (by a factor of 10 to 20) by just modifying the initial population. Rather than starting with an initial population of
“randomly generated solutions”, which have a very low fitness, we can get an enhanced initial population with fitter solutions
if we follow some simple steps. This reduces the pressure on the procedure followed after the creation of the initial population
(traditional procedure: selection-crossover-mutation), which otherwise takes many times more number of generations of
solutions to reach the optimal solution. The possibility of premature convergence is also reduced.

Key Words: Genetic Algorithms, Evolutionary Algorithms, Optimization methods.

1. INTRODUCTION

For the initial population of a G.A. we produce random solutions or members, blindly. We get some solutions that are fitter
than the others but they get totally ignored while generating new solutions of the population. If we pay attention over
these comparatively fitter solutions and use them as a benchmark for producing new solutions, then these new solutions
inherit the good features of the comparatively fitter solutions of the population, with a possibility of improvement. Hence
the initial population comes up with much fitter solutions than it otherwise does.

I demonstrate my technique with the help of a simple problem, the target optimal solution is a phrase – “peace and
prosperity”. All the possible solutions are hence treated as character arrays.

Firstly , let me clarify what I mean by “ Traditional G.A.” .

Traditional G.A.  “The standard procedure of selection, crossover and mutation. ‘Selection’- roulette wheel, ‘crossover’ -
randomly a position in the character array is chosen and all the preceding characters come from one parent while the
succeeding characters come from other parent, ‘ mutation’- modification of the off springs produced with mutation rate of
0. 01 i. e. one character out of a hundred is replaced with a random character.”

In a “traditional G.A.” we start the search for optimal solution with a population of “randomly generated solutions” and
these usually have very low fitness. Therefore when the procedure of selection, crossover and mutation starts we have
these low fitness solutions to begin with and it "may" take a lot of generations to reach up to the final optimal solution i.e.
the solution of maximum possible fitness.

Now imagine an initial population of solutions with considerably high fitness value. Doesn't this reduce the task of the
algorithm? Yes indeed it does, as it gives the algorithm a better start because now it does not have to start with the
solutions of minimal fitness.

The impact of such an initial population on G.A. performance is like, a huge part of our journey is covered before even
starting, the impact is drastic .

Let’s call this modification as “INITIAL ENHANCEMENT” and after adding this procedure to our traditional G.A. it would
become “ INITIALLY ENHANCED G.A.”. The overall number of generations of solutions taken to solve the chosen problem
by Traditional G.A. and Initially Enhanced G.A. :-

Traditional G.A.  average 774.35 generations approximately
Initially Enhanced G.A.  around 50 generations or less.

2. WORKING PROCEDURE

We have the target optimal solution phrase – “peace and prosperity”. Let the total possible alleles (possible values for one
position in the phrase i.e. one character) be 95 (the printable ASCII characters from ASCII value 32 to 126). The total
search space being (95)^20 possible phrases (20 Characters and 95 values per character).

 Student, Dept. of Computer Science and Engineering, JSS Academy of Technical Education, NOIDA - 201301,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2483

The java code for the implementation of my technique INITIAL ENHANCEMENT is provided in the section “3 Source Code
” . It will enable the readers to properly understand, analyze and test this technique. In this procedure, instead of straight
away starting with the traditional G.A. , we first spend some time and effort to find out fit solutions to start with. We
proceed in following steps :-

1) First we create a population that I call “ Mutover population ” (mutover - mutated over : as we will use mutation
over and over to create new solutions from the previously existing solution).

2) Steps to create a mutover population are :-

a) I have used Java programming language and each member/solution is an object. We begin by randomly generating
solutions till we get the first member whose fitness is greater than all the solutions produced so far. Lets store this
member object in a reference variable “fittest_member_uptil_now”.

b) We use this fittest_member_uptil_now as a benchmark for the creation of new solutions/members from now
onwards, by passing it as the argument in the constructor of new member objects. Hence we will need two member object
constructors in total in our program, one that generates a member by assigning random values, and the other having the
argument fittest_member_uptil_now whose functionality is explained ahead (c).

c) We create the new member by applying mutation on the fittest_member_uptil_now. I have used the mutation rate
“ 0.15 ” i.e. 3 out of 20 characters of fittest_member_uptil_now would probably change to give us the new member . (I used
0.15 mutation rate in the constructor because it proved out to be the best among all the mutation rates I tried (Table 1)).

d) As the new solutions are created by modification in fittest_member_uptil_now, this way the newly generated
solutions may still have the good qualities of fittest_member_uptil_now (correct character(s) in fittest_member_uptil_now
) along with a possibility of new additional good qualities (correct characters that were not present in
fittest_member_uptil_now) .

e) We keep analyzing the fitness of newly created members and as soon as we have a member who's fitness value
surpasses that of fittest_member_uptil_now, we replace the old member object in fittest_member_uptil_now with this new
member and now onwards this member becomes the benchmark, and is passed into constructor for creation of new
members of the population.

f) This procedure is followed till we reach the maximum number of members permitted in the mutover population. I
set the limit of a mutover population at a thousand members (just like the population limit of a single generation in the
traditional G.A. procedure which is executed after the INITIAL ENHANCEMENT). Reason being, I could obtain fairly good
fitness value members within this population size and it was easy to compare the performance of traditional G.A. and
Initially Enhanced G.A. by means of total generations taken to reach optimal goal. But the total no. of members in a
mutover population depends upon the programmer.

g) Now we use the same procedure (a) to f)) to create multiple mutover populations one after the other, and we
keep storing the fittest member of each mutover generation in a separate array, let be
“fittest_member_of_each_mutover_generation”. The two things that determine the performance of this technique are the
‘number of mutover populations’ and the ‘rate of mutation’ during generation of new solutions of mutover population
using fittest_member_uptil_now in the constructor. One should wisely choose the value of these two elements. In a
separate program I varied the mutation rate in the constructor with argument fittest_member_uptil_now, and analysed
the effect on the maximum fitness achieved in a single mutover population(Table 1) .

h) We can use any number of mutover populations depending upon how fast are we able to reach the optimal goal
i.e. what number of mutover populations yields the least number of overall generations in the entire procedure. (Overall
generations  mutover generations + generations produced during traditional G.A. procedure to reach the optimal/final
goal) . We can use hit and trial method to determine this. How the number of overall generations taken by the Initially
Enhanced G.A. to reach the optimal solution, varies with the number of mutover generations taken, is shown in Table 2 .

3) I have taken 20 mutover populations so it gives me 20 different solutions from 20 different populations, in array
“fittest_member_of_each_mutover_generation”. Fitness and diversity have been achieved simultaneously. Hence the
element required to beat premature convergence , fitness and diversity simultaneously, is gained here.

4) Now we apply the traditional ‘selection, crossover, and mutation of offspring’ techniques to these 20 solutions
stored in the array fittest_member_of_each_mutover_generation to create a whole new population of a thousand solutions.
I have included both the off springs produced during a crossover into the population so we have 500 crossovers giving us
1000 new members. The corresponding methods in the source code are “selection_initial()” and “do_crossover_initial()”.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2484

5) Now we enter this new population of 1000 solutions as the initial population to the traditional GA.

6) This ends our “Initial Enhancement” phase and the other phase, traditional procedure of G.A. starts here, i.e.
selection of the fittest members of the population, then crossover, then mutation of the offsprings. This continues over
generations till we reach the optimal solution.

3. SOURCE CODE

/** The code for special constructor for creation of mutover population members : **/

/* Genotype is the class whose objects are the member solutions , genes[20] is a character array which carries the
solution phrase in the object, fitness() is the method that calculates the fitness of the solution phrase { Calculated as ‘2 ^ x ’
, where x = ‘the number of correct characters in solution phrase ’ }. */

Genotype (Genotype fittest_member_uptil_now)

{

 for(int i=0;i< genes.length ;i++)

{

if(Math.random()<0.15)

 genes[i]=(char)((int)(32 + (Math.random()) * 95));

 else

 this.genes[i]=fittest_member_uptil_now.genes[i];

}

fitness();

}

/** The code for methods involved in INITIAL ENHANCEMENT are :- **/

/* population[1000] is an array which stores the reference id of the member solution objects,
fittest_member_of_each_mutover_generation[20] is an array to store the fittest member of each mutover
generation/population ; I have used 20 mutover generations so size of array is 20. */

/* Method 1 */

void setup_mutover_populations()

{

Genotype fittest_member_uptil_now;

float max_fitness_uptil_now;

for (int gen=0 ; gen < fittest_member_of_each_mutover_generation.length ;gen++)

{

max_fitness_uptil_now=1;

/* as correct characters = 0 initially and 2^0 =1 so minimum fitness possible is 1. */

fittest_member_uptil_now=null;

for(int j=0; j< population.length ;j++)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2485

{

if(max_fitness_uptil_now == 1)

 population[j]=new Genotype();

else

 population[j]=new

Genotype(fittest_member_uptil_now);

if(population[j].fitness > max_fitness_uptil_now)

{

 max_fitness_uptil_now=population[j].fitness;

fittest_member_uptil_now=population[j];

} }

fittest_member_of_each_mutover_generation[gen] =fittest_member_uptil_now;

System.out.println("mutover generation number -" +gen+"\n fittest_member_current_generation : fitness= " +
fittest_member_of_each_mutover_generation[gen].fitness + " Genes= " + String.valueOf (
fittest_member_uptil_now.genes));

System.out.println(); }

selection_initial(); }

/* Method 2 */

void selection_initial()

{

ArrayList<Genotype> mating_pool_initial = new ArrayList<Genotype>();

int i,k;

float total_fitness=0;

for (i = 0; i < fittest_member_of_each_mutover_generation.length; i++)

total_fitness += fittest_member_of_each_mutover_generation[i]. fitness;

float rand;

float fitness_sum;

for(k=0; k< population.length ; k++)

{

fitness_sum=0;

rand=(float)Math.random()*total_fitness;

for (i = 0; i < fittest_member_of_each_mutover_generation.length; i++)

{

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2486

fitness_sum += fittest_member_of_each_mutover_generation[i]. fitness;

if(fitness_sum > rand)

{

mating_pool_initial.add (fittest_member_of_each_mutover_generation[i]);

break;

 }

}

}

do_crossover_initial (mating_pool_initial) ;

}

/* Method 3 */

void do_crossover_initial (ArrayList<Genotype> mating_pool_initial)

{

for (int i=0; i < (population.length)/2; i++)

{

int a = (int) (Math.random() * mating_pool_initial.size ());

int b = (int) (Math.random () * mating_pool_initial.size());

Genotype parent1 = mating_pool_initial.get(a);

Genotype parent2 = mating_pool_initial.get(b);

if(String.valueOf(parent1.genes).equals(String.valueOf(parent2.genes)))

i--;

else

{

Genotype[] child_array=new Genotype[2];

child_array = parent1. crossover_initial(parent2);

child_array[0].mutate();

child_array[1].mutate();

population[i]=child_array[0];

population[(population.length) /2+i] =child_array[1];

}

}

}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2487

4. RESULTS

Table -1: Maximum Fitness Achieved in a Single Mutover Generation for Different Mutation Rates

Table -2: Number of Overall Generations taken to reach the Optimal Solution for Different Number of Mutover
Generations taken.

Trial

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2488

Chart -1: Total overall number of generations taken to reach the optimal solution : Traditional G.A. Vs Initially Enhanced
G.A. (Mutover generations = 20, mutover population mutation rate = 0.15)

5. CONCLUSIONS

I have provided a method which improves the beginning of a traditional G.A. The interesting thing is that other methods
which improve the performance of G.A. after it has commenced (like better selection techniques, better crossover
methods etc.) can still be applied to get even better results.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2489

The only thing I would like the readers to keep in mind while using this technique, Initial Enhancement, is that be very
careful in choosing :-

a) the number of mutover populations
b) the rate of mutation of “fittest_member_uptil_now” for generating new members of mutover population.

I have used hit and trial method to demonstrate the behavior of my technique for different values of a) and b) (mentioned
above) . As we observe in Table 1, the maximum fitness achieved appears to be highest around Mutation Rate = ‘0.1 to
0.15’ . It increases as we go from 0.8 to 0.1 and then falls sharply. Similarly as shown in Table 2, the overall generations
taken to reach final goal , are least (optimal) when number of mutover populations is in the interval ‘10 to 20’.Values
greater or lesser than this range appear to result in greater number of overall generations taken to reach the goal. A
wrong selection of value for a) or b) may render this technique ineffective.

REFERENCES

1. D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-Wesley Professional,
January 1989.

2. J. H. Holland, “Adaptation in Natural and Artificial Systems,” Ann Arbor:The University of Michigan Press, 1975.

3. R.L. Haupt, S.E. Haupt, “Practical Genetic Algorithms,” 2nd ed., John Wiley & Sons, New Jersey, 2004.

4. M. Melanie, “An Introduction to Genetic Algorithms,” MIT Press, Massachusetts, 1999.

5. S.N. Sivanandam, S.N. Deepa, “Introduction to Genetic Algorithms,” SpringerVerlag, Berlin, Heidelberg, 2008.

6. J. Koza, “Genetic Programming: On the Programming of Computers by Means of Natural Selection,” MIT press,
1992.

7. R. Belew and M. Mitchell, “Adaptive Individuals in Evolving Populations, Santa Fe Institute Studies in the Sciences
of Complexity Volume XXVI, Addison Wesley, 1996.

8. M. Mitchell, J. Holland, S. Forrest, "When Will a Genetic Algorithm Outperform Hill Climbing?" in Advances in
Neural Information Processing Systems 6, 1993.

9. J. Koza , “Genetic Programming II : Automatic Discovery of Reusable Programs” ,MIT press, 1994.

10. J. Baldwin, “A new factor in evolution”, American Naturalist 30: 441- 451, 1896.

11. L. Davis, “Handbook of Genetic Algorithms,” Van Nostrand Reinhold ,1991.

