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Abstract - The theory of Kac Moody algebras has 
interesting applications to different  branches of Mathematics 
and Mathematical Physics. The study of  indefinite  Kac-Moody 
algebras is one of the challenging areas in pure mathematical 
research. The main objective of this work   is  to study of rank 9 
Dynkin  diagrams associated with the  indefinite , quasi 
hyperbolic class of Kac Moody algebras of rank 9.  The general  
classification of connected, non isomorphic  Dynkin diagrams 
associated with these rank 9 algebras is given and a study on 
the   imaginary root system is undertaken. Computations of the 
bilinear forms and the Weyl group actions are given for  
specific classes in the rank 9 family.  
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1. INTRODUCTION 
 

Kac Moody algebras, developed simultaneously by 
Kac and Moody around 1967 ([6],[11]), are classified into 
three main classes  namely finite, affine and indefinite types; 
Among the indefinite class, extended hyperbolic type was 
introduced by Sthanumoorthy and Uma Maheswari  in [12] 
while  obtaining a new subclass of imaginary roots called 
purely imaginary roots; The quasi finite family was 
introduced in [5] ; Subclasses of the indefinite type, namely, 
the quasi hyperbolic classes and quasi affine family ([17] – 
[19])  were introduced by Uma Maheswari and Indefinite 
quasi affine Kac Moody algebras QHG2, QHA2

(1),QAC(1)
2 and 

QAD(2)
3 were studied in [20] - [22];  

Indefinite Kac-Moody algebras of special linear  and 
classical type were studied in ([1], [2]) by Benkart et.al  . 
Strictly imaginary roots and special imaginary roots were 
studied by Casperson [4] and Bennett [3]. In [7] – [10], study 
on the structure and root multiplicities for indefinite 
families. Extended hyperbolic Kac-Moody algebras EHA1

(1)  
and  EHA2

(2) ([12] – [16]).   Uma Maheswari studied the quasi 
affine family QAG(1)

2 ;. Uma Maheswari introduced another 
new class of Dynkin diagrams and associated Kac Moody 
algebras of quasi hyperbolic type in [18];  Rank 3 Dynkin 
diagrams of quasi hyperbolic Kac Moody algebras were 
classified  in [18] and properties of roots were studied. 

 In this paper,  the main focus is on the Dynkin 
diagrams associated with rank 9 quasi hyperbolic Kac Moody 
algebras; The classification theorem which characterizes 

connected, non isomorphic  Dynkin diagrams associated 
with the Generalized Cartan Matrices  of indefinite, Quasi 
hyperbolic Kac Moody algebras of rank 9 is proved in Section 
3.  The imaginary roots in specific families of rank 9 are 
discussed and the isotropic roots are identified, and the 
properties of root system, namely the purely imaginary and 
strictly imaginary roots are discussed.   

2. PRELIMINARIES  
 
The basic definitions and concepts of Kac-Moody algebras 
can be referred from Kac[6] and Wan[23]. 

Definition 2.1[6]: An integer matrix n

jiijaA 1,)(   is called 

as a Generalized Cartan Matrix ( GCM in short) if it satisfies 
the following conditions: 
 
(i) aii = 2    i =1,2,….,n 

(ii) aij = 0   aji = 0   i, j = 1,2,…,n 

(iii) aij  0   i, j = 1,2,…,n.  
 

Let  the index set of A  be denoted by N = {1,…,n}. 
 
Definition 2.2[6]: A realization of a matrix n

jiijaA 1,)(   is a 

triple ( H, , v ) where l is the rank of A,  H is a  2n - l 

dimensional complex vector space,  },...,{ 1 n  and 

v },...,{ 1

v

n

v   are linearly independent subsets of  H* 

and H respectively, satisfying  
ij

v

ij a)(  for i, j = 1,….,n.  

 is called the root basis. Elements of    are  simple roots.  
 The Kac-Moody algebra g(A) associated with a GCM 

n

jiijaA 1,)(   is the Lie algebra generated by the elements ei 

, fi , ni ,...2,1   and  H  with the   following defining relations : 

N    ji,  j,i   ,0)(,0)(

,)(],[,)(],[,],[,,,0],[

11

''







j

a

ij

a

i

jjjjjj

v

iijji

fadfeade

fhfhehehfeHhhhh

ijij


   

Then we have the  root space decomposition  

)()( AgAg
Q



 where 

}.,)(],/[)({)( HhallforxhxhAgxAg    

An element  ,  0   in Q  is called a root if 0g . Let 

,
1




 
n

i

izQ  Q   has a partial ordering “ ” defined by 

    if   Q +,  where  ,  Q .
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Let ))(( A  denote the set of all roots of g(A) 

and 
  the set of all positive roots of  g(A). We have  

and    
  . 

 A root α is called real, if there exists a w ɛW such that w(α) is 
a simple root;  
 
A root which is not real is called an imaginary root. 
  
An imaginary root α is called isotropic if (α,α) = 0. 

 A positive imaginary root α is a minimal imaginary root (MI 
root, for short) if α is minimal with respect to the partial 
order on H*. 
 
Definition 2.3[6]: The Dynkin diagram associated with the 
GCM A of order n, denoted by S(A)  is defined as follows: S(A) 
has n vertices and vertices i and j are connected by max 
{|aij|,|aji|} number of lines if  aij. aji  4 and there is an arrow 
pointing towards i if  |aij| > 1. If   aij. aji> 4, i and j are 
connected by a bold faced edge, equipped with the ordered 
pair  (|aij| , |aji|)  of  integers.  

Definition 2.5[17]: Let A= n

jiija 1,)(  ,  be an indecomposable 

GCM of indefinite type. We define The associated Dynkin 
diagram S (A) is said to be of  Quasi Hyperbolic (QH) type if S 
(A) has a proper connected sub diagram of hyperbolic type 
with n-1 vertices.  
 
The GCM A is of Quasi Hyperbolic  type if the corresponding 
Dynkin diagram S (A) is of QH type.  
 
We then say the Kac Moody algebra g(A) is of Quasi 
Hyperbolic type. 
 

3. CLASSIFICATION THEOREM  OF DYNKIN 
DIAGRAMS ASSOCIATED WITH QUASI HYPERBOLIC 
KAC MOODY ALGEBRAS OF  RANK 9 

 
In this section we shall completely classify the non 
isomorphic connected Dynkin diagrams of rank 9 associated 
with the quasi hyperbolic class. 
Theorem 3.1 (Classification Theorem) :  There are 5 x 

)89(
8

1

i

i

i C


 non-isomorphic  connected  Dynkin diagrams 

associated with family of Quasi hyperbolic Kac Moody 
algebras of rank 9. 

Proof : There are five different classes of hyperbolic 
Dynkin diagrams of rank 8( [23]. A rank 9 quasi hyperbolic 
Dynkin diagram is obtained by extending one more vertex to 
any of the existing hyperbolic Dynkin diagrams of rank 8.  

 
Case I) Consider the GCM associated with the Dynkin 
diagram  of rank 8 hyperbolic diagram H1

(8) 
 (notation as in 

Wan [27]). Extend the Dynkin diagram with an added  9th 
vertex which can  be connected with either one , two, three, 

four , five, six, seven, eight vertices of the hyperbolic Dynkin 
diagram through 9 possible edges : 
                                                                                           --(3.1) 
 
 
 Sub Case 1) α9  is connected with only one of the 8 vertices 
of H1

(8) .  

This vertex can be selected from the 8 vertices in 8C 1 ways.  
 αi ( i=1,…,8) and α9 , can be joined by one  of the 9 possible 
edges listed in Eqn(3.1).  
Thus we obtain  9 x 8C1 possible Dynkin diagrams . 
 
Sub Case 2) α9  is connected with any two  of the 8 vertices 
of H1

(8)   that can be chosen from the 8 vertices in 8C 2  ways.  
Thus,  there are  92 x 8C2 possible Dynkin diagrams. 
 
Sub Case 3) α9  is connected with any three of the 8 vertices 
of H1

(8) which can be selected  in 8C3  ways.  Hence there are  
93x 8C3 possible Dynkin diagrams in this case. 
 
Sub Case 4) α9  is connected with any four  of the 8 vertices 
of H1

(8) which can be chosen in 8C4  ways.  Thus  are 94 x 8C4 
possible Dynkin diagrams. 
 
Sub Case 5) α9  is connected with any five  of the 8 vertices 
of H1

(8)  that can be selected from the 8 vertices in 8C5  ways.  
There will be 95 x 9C5 possible Dynkin diagrams. 
 
Sub Case 6) α9  is connected with any six  of the 8 vertices of 
H1

(8) which can be chosen  in 8C6  ways. Thus, there are 96 x 
8C6  Dynkin diagrams in this case. 
 
Sub Case 7) α9  is connected with any seven  of the 8 vertices 
of H1

(8) which can be selected  in 8C7  ways. Thus, there will 
be 97 x 8C7 possible Dynkin diagrams. 
 
Sub Case 8) α9  is connected with all the 8 vertices of H1

(9) . 

Hence there will be 98 x 8C8 possible Dynkin diagrams. 
 
In  all,   there are 9  x 8C1 + 92 x 8C2 + 93 x 8C3 + 94 x 8C4+ 95 x 
8C5 + 96 x 8C6 + 97 x 8C7 + 98 x 8C8 Dynkin diagrams 
associated with the Quasi hyperbolic class  of rank 9. 
  
Case II ) There are 5 different classes of Dynkin diagrams of 
rank 9 namely H1

(9) , H2
(9) , H3

(9)  and  H4
(9) .  In each case , 

there are  9  x 8C1 + 92 x 8C2 + 93 x 8C3 + 94 x 8C4+ 95 x 8C5 + 
96 x 8C6 + 97 x 8C7 + 98 x 8C8 Dynkin diagrams as in Case I) . 
 Thus, totally, there are 
 
    5 (9  x 8C1 + 92 x 8C2 + 93 x 8C3 + 94 x 8C4+ 95 x 8C5 + 96 x 
8C6 + 97 x 8C7 + 98 x 8C8 )  

    = 5 x )89(
8

1

i

i

i C


connected Dynkin diagrams of rank 9 in 

the quasi hyperbolic family, proving the theorem . 
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3.2  A SPECIFIC FAMILY IN THE  CLASS OF QUASI 
HYPERBOLIC KAC-MOODY ALGEBRA QH1

(9) 

 In this section , we consider a particular class of 
quasi hyperbolic Kac Moody algebra in the family QH1

(9). For 
simplicity of notation, let us represent this  quasi hyperbolic 
Kac-Moody algebra by QH1

(9)whose associated Generalized 
Cartan Matrix is, is given by  

A = 9

1,)( jiija
 =  
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
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p

p

,    

where p is any positive integer (>2).  

The corresponding Dynkin diagram is 
                                       

                                              
                                           7                            8                   9                  
 
 
 
  
 
 

 
    1                 2                 3              4               5               6 
 
 

Since the  GCM is symmetric, the existence of the non 
degenerate, symmetric bilinear form  
( , )  is guaranteed.  
By definition, <αi,αj>= aij and (αi,αj)=2 for all i=1,…,9. 
All simple roots have the same length. 
 (α1,α2) = (α2,α3)= (α3,α4)=(α4,α5)=(α5,α6)=(α3,α7)= (α5,α8)= -1 
and  (α8,α9)= -p;  
 
Consider roots of Height 2: 
 
(α1+α2, α1+α2) =2 > 0, α1+α2 is a real root. 
 α1+α2,  α2+α3, α3+α4, α4+α5, α5+α6, α3+α7, α5+α8 are all real 
roots , since (α1+α2, α1+α2), ( α2+α3, α2+α3), ( α3+α4, α3+α4), 
 ( α4+α5, α4+α5 ), (α5+α6, α5+α6 ), (α3+α7, α3+α7 ), 
(α5+α8,α5+α8)  are all > 0.  
α8+α9  is real  if 4-2p >0, (i.e). p <2 

α8+α9 is imaginary if p > 2 and in particular, α8+α9 is minimal 
imaginary if p> 2 
α8+α9 is isotropic if p = 2 
 
Consider Height 3 Roots: 
 
(α1+ α2+ α3, α1+ α2+ α3)  > 0 , hence α1+ α2+ α3 is a real root. 
Also from the bilinear form computation, we get that  α2+ α3+ 
α4, α3+ α4+ α5, α4+ α5+ α6, α2+ α3+ α7, α3+ α4+ α7, α4+ α5+ α8 , 

α5+ α6+ α8 are all real roots.   
 

α5+ α8+ α9 is imaginary if p > 2; 
α5+ α8+ α9 is isotropic if p = 2; 
α5+ α8+ α9 is imaginary if p > 2 
 

For p >2,  2α8+ α9 is an  imaginary root for (2α8+ α9, 2α8+ α9) 
< 0; Similarly  2α8+ α9   is imaginary if p > 2 and  isotropic if 
p=2. 
 
Proposition 3.3: The Purely Imaginary Property (PIM) is 
satisfied by  the rank 9 quasi hyperbolic Kac Moody 
algebra QH1

(9). 
 
Proof : The Support of any root must be connected. From the 
Dynkin diagram of  QH1

(9) it is clear that any imaginary root 
must  involves α8+ α9.   
 
If  we take any two positive imaginary roots, then each of 
these roots and their addition also  will involve α8+ α9 (in 
multiples of the coefficients) . Thus the addition of these two 
positive imaginary roots will also be an imaginary root.  
 
                    Therefore the purely imaginary property is 
satisfied by QH1

(9) . 
 
Example 3.4:  
 
Let p >2. Consider the two imaginary roots α = α8+ α9 and β = 
α5+ α8+ α9.  
 
Then  (α+β, α+β) < 0, since p > 2. Hence  α+β  is also an 
imaginary root, guaranteeing the existence of  purely 
imaginary roots. 
 
Proposition 3.5: The quasi hyperbolic Kac Moody 
algebra QH1

(9) does not satisfy the special imaginary 
property. 
 

The  family QH1
(9) contains indefinite subclasses .  

By the characterization of the special imaginary roots, any 
Kac Moody algebra which contains indefinite subclass do not 
possess the special imaginary property  and hence special 
imaginary property of roots do not  hold for QH1

(9) 

 

Proposition 3.6: The Strictly Imaginary Property (SIM) is 
not satisfied for the family QH1

(9). 
 
     Consider the imaginary root α = α5+ α9+ α10  and the real 
root  β = α2+ α3.   
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It is easily seen that neither α+β nor  α-β are roots since the 
support of α+β and support of α-β are not connected. 
Therefore the imaginary root α is not strictly imaginary  and 
QH1

(9) does not satisfy the SIM property.  
 

CONCLUSION  
 
The study on the rank 9 quasi hyperbolic family is 
undertaken here and  complete classification of connected 
non isomorphic  Dynkin diagrams of rank 9, associated with 
these indefinite Quasi hyperbolic Kac Moody algebras is 
given. Basic  properties of roots are analysed. Further, this 
work can be extended and using the representation theory, 
the indepth structure of this quasi hyperbolic algebras. 
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