’l, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 05 Issue: 04 | Apr-2018

www.irjet.net

p-ISSN: 2395-0072

Debugging - A way to automate it

Abhilash Yadahalli?, Dr. C. Vidya Raj?

1Student, The National Institute of Engineering, Mysore, Karnataka, India.
2 Professor, Dept. of Computer Science Engineering, The National Institute of Engineering, Mysore, Karnataka.

Abstract - Debugging is the routine process of locating
and removing computer program bugs, errors or
abnormalities, which is methodically handled by software
programmers via debugging tools. Debugging checks, detects
and corrects errors or bugs to allow proper program
operation according to set specifications.

In the debugging process, complete software programs are
regularly compiled and executed to identify and rectify
issues. Large software programs, which contain millions of
source code lines, are divided into small components. For
efficiency, each component is debugged separately at first,
followed by the program as a whole. Debugging can be done
manually by going through the code and finding and fixing
the bugs or can be done using event logs.

The manual way can be tiresome process and involves lot of
efforts and is time consuming. Thus, logs are used to obtain
data about the system execution which helps in narrowing
our view about the root cause of the issue. Thus, these logs
help us in reducing both time and human effort. Thus
debugging process can be automated to some extent to reduce
both time and effortslll. A software or a tool can be
developed which runs and collect all the system information
required for a debugger to find and fix the problem thus,
reducing his time and efforts.

Key Words: Debugging, Automated debugging, Debug logs,
ETL Trace, Debug Analyzer, ETL Logs.

1. INTRODUCTION

Debugging rangesin complexity from fixing simple
errors to performing lengthy and tiresome tasks of data
collection, analysis, and scheduling updates. According to

Daniel Hansson Verifyter[2], debugging skill of the
programmer can be a major factor in the ability to debug a
problem, but the difficulty of software debugging varies
greatly with the complexity of the system, and also depends,
to some extent, on the programming language used and the
available tools, such as debuggers. Debuggers are software
tools which enable the programmer to monitor the
execution of a program, stop it, restart it, set breakpoints,
and change values in memory. Some of these can be
automated to reduce both time and effort of the debugger.

In this paper, a concept where an ETL Trace is taken and
analyzed for possible failure cases. A very commonly known
failure is HPD-Hot Plug Detect. Hot Plugging is connecting

the display to the system during or when the system is
turned on. Many kinds of failures can in this condition like,
Blank-Out: A display will not come up even after it's
connected, Corruption: It happens when an image fails to
display properly due to wrong programming of the display
registers.

These kind of failures can be analyzed and the
reasons for these kinds of failures can be approximated to an
extent. The Analyzer tool does this by analyzing the trace
and finding a possible reason for it.

1.1 Techniques of debugging

There are 2 types of debugging that can be done;
- Interactive Debugging: It includes methods like Print,
Remote and Post-mortem Debugging.

Debugging of Embedded Systems.

1.2 Log Files

Manual debugging involves setting breakpoints and
finding the root cause for the issue. This is a tiresome
process and involves lot of efforts and is time consuming.
Thus, logs are used to obtain data about the system
execution which helps in narrowing our view about the root
cause of the issue. Thus, these logs help us in reducing both
time and human effort. ETL Files, Mem-Dumps, etc. are some

examples for log files.
2. ETL Files

Microsoft Windows records application and system-
level warnings, errors or other events to a binary file called
the event trace log, or ETL, which can then be used to
troubleshoot potential problems. An ETL file is a log file
created by Microsoft Trace logl*l, a program that creates
logs using the events from the kernel in Microsoft operating
systems. It contains trace messages that have been
generated during trace sessions, such as disk accesses or
page faults. ETL files are used to log high-frequency events
while tracking the performance of an operating system.

Tracelogs are generated by trace providersin trace
session buffers and are stored by the operating system.
They are then written to alog and stored in a compressed
binary format in order to reduce the amount of space

© 2018,IRJET | ImpactFactor value: 6.171

IS0 9001:2008 Certified Journal | Page 4815

u, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 05 Issue: 04 | Apr-2018

www.irjet.net

p-ISSN: 2395-0072

occupied. Reports may be generated from ETL files using
the command-line utility Tracerpt. ETL file output may be
configured with several options, such as a maximum
allowable file size, so thatthe logsdonot causeacomputer
run outof disk space.

These ETL files can be opened using windows
built-in analyzer called Windows Performance Analyzer.
$Windows Performance Analyzer (WPA)[*! is tool that
creates graphs and data tables of Event Tracing
for Windows (ETW) events that are recorded by
Windows Performance Recorder (WPR), Xperf, or
an assessment that is run in the Assessment Platform.
WPA can open any event trace log (ETL) file for analysis.
WPA is a powerful analysis tool that combines a very
flexible Ul with extensive graphing capabilities and data
tables that can be pivoted and that have full text search
capabilities.

= ‘C\boot_BASE +CSWITCH_1.etl - Windows

8

B

#a
seepq] [nss

N

i

b M

T R

]

Fig-1: ETL Trace File

Atool called Tracescripts is used to obtain these ETL files[8].
This tool is run and the issue is reproduced, the tool records
the system behavior from start to the end of the session
which creates .ETL file. This file is viewed using WPA which
tells the behavior of the system.

2.1 Trace Sessions

Atrace sessionis a period during which a trace
provider is generating trace messages. The system maintains
a set of buffers for the trace session to store trace messages
until they are delivered ("flushed") to a trace log or a trace
consumer.

There are three basic types of trace sessions: trace
log sessions, real-time trace sessions, and buffered trace
sessions. A single trace session can be a trace log session, a
real-time trace session, or both. Buffered trace sessions are
exclusive.

Inatrace log session!’], trace messages are written
from the trace buffers to a log file in binary format. This is
the standard, default type of trace session.

3. Design and Implementation

The main objective was to automate the debug
process and to reduce the time and human efforts required.
The logs obtained after the trace session are checked for
correctness, if found correct the logs are then given as an
input to the Analyzer.

The Analyzer takes these logs, processes them and
outputs the result. The processing of the log is an iterative
process which includes various steps at different stages.

Check if log ok?

No

ok?

Yes l

Trace Analyzer

¢

Result logs Abort

==
&

Fig-3.1: Flow Diagram of the Analyzer

The above flow chart slows the flow diagram of the
Analyzer. A user can at any point abort the analyzing which
will end the processing of the log files.

In this paper the main concentration is on HPD
related failures, analyzing them and finding a possible
reason for these failures or errors.

Hot-Plugging a display might resultin many kinds of
failures like, display might fail to show up (Blank-out),
corruption on the display, resolution might not show in its
timing and many more. All these failures are analyzed and a
possible reason for these failures are displayed by the tool.
This helps the debuggers to resolve and find a fix to the bug
more efficiently and quickly.

© 2018,IRJET | ImpactFactor value: 6.171

IS0 9001:2008 Certified Journal | Page 4816

’,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

IRJET Volume: 05 Issue: 04 | Apr-2018

www.irjet.net

p-ISSN: 2395-0072

e LR

Fig-3.2: Corruption seen on Hot-Plug.

‘ Log (send log)

5z
HPD Analyze

\ Check if Analysis id done?

TRACE ANALYZER

Analysis
done?

lm

5 “
?

No

Yes

I

!
—’“

Fig-3.3: Flow Diagram of the Trace Analyzer Tool for HPD.

A detailed expansion the Trace Analyzer tool is
shown in fig 3.3. Once the HPD Analysis is exited, the tool
checks for the correctness and completeness of the output. If
everything is fine, the results are stored in a file which is
given as an output to the viewer. If not then the analysis is
aborted and ABORT message is displayed.

Once aborted the user has to re-run the whole

analysis from the beginning.

Neo

F’ea

Yes Read EDID of the
Di=play

l

Mo of displays
-— connected and It's
(R

Yes

Report EDID and ID's
to O3,

Enable Visibility

Fig-3.4: Flow Diagram of the Analysis done on Trace files.

The step-by-step analysis done on Trace files is
shown in fig 3.4.

Until any display is Hot-Plugged the system remains
in wait/unconnected state. Once Hot-Plugged/connected the
system runs into a series of checks and captures logs related
to connected display and OS. At all point the system checks
for the LiveStatus of the display. LiveStatus is whether the
display is connected or not. If disconnected at any point
during the analysis, the trace stops and displays an error
message and return back to wait state.

The main data that is read from the connected
display is its Extended Display Identification Data (EDID) [10],
EDID is a metadata format for display devices to describe
their capabilities. EDID is a 128-bit data structure contains
information like manufactures name, serial number, product
type, timing supported, display size, luminance and
DisplayID. Every Display Driver uses the EDID structures.

© 2018,IRJET | ImpactFactor value: 6.171

IS0 9001:2008 Certified Journal | Page 4817

‘,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 05 Issue: 04 | Apr-2018

www.irjet.net

p-ISSN: 2395-0072

Address o
(Decimal) l Data | General Description
0-7 Header Constant fixed pattern
8-9 Manufacturer ID
10-11 Product ID Code ‘ R
t - S Display product identification
12-15 Serial Number
16-17 Manufacture Date
18 | EDID version
19 f nformation
20 | Video Input Type | Basic display parameters. Video
21 Horizontal Size (cm) input type (analeg or digital),
I display size, power management,
22 | Vertical Size (cm) syne, color space, and timing
23 Display Gamma capabiiities and preferences are
24 Supported Features reported here.
25-34 Color Characteristics ,)JF SHECs
definition
35-36 Established Supported Timings
37 Manufacturer's Reserved Timing
_38-53 | EDID Standard Timings S“')ror,(ed, | Timing information for-all resolu-
54-71 Detailed Timing Descriptor Block 1 ticns supported by the display are
72-89 Detailed Timing Descriptor Block 2 reported here
90 107 Detailed Timing Descriptor Block 3
108 125 Detalled Timing Descriptor Block 4
126 Extension Elag Nwlbgf ork(op‘hc::a‘;' 1?84;)’[8
¢ extension blocks to follow
127 Checksum
Fig-3.4: EDID 128-bit table.
Item Condition Data
Manufacturer ID | GSM 1E6D
Version Digital : 1 01
Revision Digital : 3 |03

EDID DATA - LP81G Model Analog 128bytes
Addr 00 01 02 03 04 0S 06 07 08 09 0A OB OC 0D OE OF

0000 |00 |FF |FF |FF |FF |FF |FF |00 |1E |6D [FSASC

0010 _C 01 03 08 46 27 78 0A D3 BO A3 57 49_9(: 25
0020 11 49 4B Al 08 00 01 01 45 40 61 40 01 01 01 01
0030 01 0101 01 01 01 1B 21 50 A0 S1 00 1E 30 48 88
0040 35 00 BC 88 21 00 00 1C OE 1F 00 80 51 00 1E 30
0050 40 80 37 00 BC 88 21 00 00 18[00 00 00DFC 00 4C|
0060 [47_20 .54 56 DAD20 2020 2020 20120]00 |00 00 [ED
0070 0032 4B|1C 43 OF 00 0A 201202020 20 20 00[E]

HDMI 1: 256bytes>/ <HDMI 2: 256bytes
The data is same without Physical address

Addr 00 01 02 03 04 0S 06 07 08 09 0A OB OC 0D OE OF

oooo,nn FF |FF |FF |FF |FF |FF |00 |1E |6D [F6AC|

0010 [C |01 03 80 46 27 78 EA D9 B0 A3 57 49 9c 25
0020 4B A1 08 0001 01 45 40 61 40 01 0101 01
0030 01| 01v01j01,01 0164 19 00 /30 41 00 1E 30 30 68
0040 (34 00 BC 86 21 00 00 1B 1B 21 50 A0 51 00 1E 30
0050 4

0060 [
0070 |0

00F0 00 00 00 00 00 00 00 00 00|00 00 00 00 00 00[E]

-> Physical address(F) : HDMI 1 -> 10, HDMI 2 -> 20
| v |

Fig-3.5: EDID 128-bit Raw Data.

4. CONCLUSIONS

In the debugging process, complete software
programs are regularly compiled and executed to identify
and rectify issues. Debugging when done manually can be
very tiresome and time consuming as in involves going
through the code, finding and fixing the bugs. This process to
some extent can be automated using event logs in order to
reduce both time and human efforts. In this paper there is a
suggested working idea on how to automate a part of debug
process.

HPD is just one of the checklist. Similarly analyses
can also be added for different checklists like, Blank-out,
Buffer Under-run, memory allocation and de-allocation etc.

The trace analyzer does this work by analyzing the
logs of different checklist and finding the most nearest and
accurate solution to fix the bug. This tool can only automate
the process up to some extent and not all of it. The debug
process still needs a human hand in looking through the
output data from the analyzers and trying the best solution
to fix the bug.

REFERENCES:

[1] Measuring the Gain of Automatic Debug
http://ieeexplore.ieee.org/document/6926095/?re
load=true

[2] Automatic Bug Fixing by Daniel Hansson Verifyter
AB, Lund, Sweden
http://ieeexplore.ieee.org/document/7548934/

[3] https://docs.microsoft.com/en-us/windows-
hardware/test/wpt/

[4] https://en.wikipedia.org/wiki/Tracing_(software)

[5] https://msdn.microsoft.com/en-
us/library/windows/hardware/hh448170.aspx

[6] https://fileinfo.com/extension/etl

[7] https://docs.microsoft.com/en-us/windows-
hardware/drivers/devtest/trace-message-control-
file

[8] https://docs.microsoft.com/en-us/windows-
hardware/drivers/devtest/etl-trace-log

[9] https://docs.microsoft.com/en-us/windows-
hardware/drivers/devtest/trace-session

[10] Wikipedia-Extended Display Identification Data

© 2018,IRJET | ImpactFactor value: 6.171

IS0 9001:2008 Certified Journal | Page 4818

http://ieeexplore.ieee.org/document/6926095/?reload=true
http://ieeexplore.ieee.org/document/6926095/?reload=true
http://ieeexplore.ieee.org/document/7548934/
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/
https://en.wikipedia.org/wiki/Tracing_(software)
https://msdn.microsoft.com/en-us/library/windows/hardware/hh448170.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh448170.aspx
https://fileinfo.com/extension/etl
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/trace-message-control-file
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/trace-message-control-file
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/trace-message-control-file
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/trace-session
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/trace-session

