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Abstract - Standard TCP (New Reno) is vulnerable to 
startup effects that cause loss of connection setup packets or 
result in long round trip time (RTT) greater than 1-second. 
When either of these events occurs, TCP New Reno resets its 
congestion state by reducing initial congestion window (IW) 
and slow-start threshold (ssthresh) values to 1 and 2 
maximum segment size (MSS) respectively. In this condition, 
TCP requires multiple round trips to complete delay-
sensitive transactions, thus resulting in poor user-
experience. This paper presents a new congestion control 
algorithm that makes TCP more responsive by increasing its 
robustness against startup losses. Our main contribution in 
this paper is derivation of a stochastic model that yields a 
simple expression for computing the latency of a short-lived 
transaction as a function of IW, ssthresh and bandwidth-
delay product (BDP) of an uncongested link.  
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1. Introduction 
 
The transmission control protocol (TCP) 1 is the main 
protocol used on the Internet for reliable delivery of data 
packets between communicating hosts. A TCP client 
initiates a connection to a remote Internet server using a 
three-way handshake (3WHS) procedure. In general, the 
client then submits a data request, which is processed by 
the server resulting in a data response. Once data 
transmission starts, TCP attempts to maximize throughput 
without causing congestion on the network. Several works 
have focused on designing new TCP algorithms with better 
throughput performance such as in 2345. 

Conversely, throughput performance is not the main 
requirement of short-lived interactive applications (e.g. 
web browsing and E-commerce), which account for a 
majority of TCP flows 67. Quite different from bulk 
transfers, interactive applications demand speedy delivery 
of few data chunks across the Internet within short delay 
bounds. Despite many algorithms proposed to solve this 
important problem 89101112, it still remains an open 
challenge for TCP. 

This paper proposes a new algorithm that aims to make 
standard TCP (New Reno) more responsive by increasing 
its robustness against startup losses. TCP New Reno 
interprets the loss of connection setup packets (i.e. SYN or 
SYN-ACK) as a signal for serious network congestion, 
prompting a sender to reduce its initial congestion 

window (IW) to 1 maximum segment size (MSS) and its 
slow-start threshold (ssthresh) to 2 MSS 13. This response 
increases latency of short-lived interactive applications by 
several round trips, thus significantly reducing end-user 
Internet experience.  

While ignoring the SYN congestion signal and starting with 
very large IW and ssthresh values negates TCP 
conservative principles, there are strong motives to use a 
less conservative approach. Firstly, random packet loss is 
quite a common occurrence when data traverses 
wireless/mobile network links e.g. due to high contention 
between multiple users sharing the radio channel, poor 
weather conditions, or when a mobile host is obstructed 
and suffers temporary link outages 1415. Also, network 
middle boxes such as firewalls, proxies, and network 
address translators, can erroneously drop SYN packets 
due to suspicion of unwanted or malicious traffic 1617. In 
a more general context, TCP inherently causes loss of 
packets (including the SYN and SYN-ACK) when probing 
for available capacity and trying to maximize throughput 
181920.  

We therefore propose a new algorithm called ‘TCP SYN 
Loss (TSL) Startup Algorithm’ that uses a halving 
congestion response function during startup, which is less 
conservative than the current standard. After connection 
setup is completed, standard TCP congestion control is 
applied for the data transfer phase.  

The rest of this paper is organized as follows: Section 2 
presents the TSL startup algorithm that we propose for 
use when congestion is signalled during the connection 
setup phase of a new connection. Section 3 then develops a 
stochastic model of the proposed algorithm with a 
discussion of its impact on web transactions in section 4. 
Finally, section 5 concludes the paper and presents future 
work. 

2. TSL Congestion Control Algorithm 
 
Deviating from current standard, the proposed TSL startup 
algorithm reduces the default startup rate of a new TCP 
flow by a maximum factor of 2 when the SYN or SYN-ACK 
packet is dropped during connection establishment.  

If a further loss occurs before the connection is established, 
then the algorithm reverts to the standard TCP behaviour 
by resetting the Initial congestion window to 1 MSS and 
Slow-start threshold to 2 MSS.  



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                 Volume: 05 Issue: 04 | Apr-2018                     www.irjet.net                                                                 p-ISSN: 2395-0072 

  

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 2 

 

 

          (a)    (b) 

Fig. 1 Illustration of a typical TCP transaction (a) without 
SYN loss and (b) with SYN loss 

Our proposed algorithm uses the following set of 
instructions. 
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Since the aim of the TSL algorithm is to enable a new flow 
to complete short data transfers quickly using slow-start, it 
attempts to keep startup variables as high as possible even 
when congestion is signalled. Hence in addition to rate 
halving, lower bounds (i.e. IWmin and ssthreshmin) are 
defined in case the default IW and ssthresh values are 
initially low e.g. when implementing standard RFC 5681, 
which limits IW to 3 MSS.  

It can be argued that if the SYN congestion signal was really 
due to high network utilisation, then the TSL flow remains 
aggressive for only 1 round trip time (RTT) before 
receiving additional feedback and falling back to standard 
TCP congestion behaviour. Conversely, if the signal is only 
due to transient congestion or transmission errors, slow-
start quickly grows the congestion window and completes 
a short data transfer quickly, to the benefit of the end-user. 

Figure 2 illustrates how TSL startup enables a short flow to 
complete faster than a parallel TCP New Reno flow. Both 
flows drop the SYN-ACK packet at time t1. However when 
data transmission eventually begins at t2, the TSL flow 
completes faster because it sets IW to 3 MSS and ssthresh 

to 40 MSS (compared to 1 MSS and 2 MSS respectively for 
the TCP New Reno flow).  

 

Fig. 2 Illustration of a TSL flow starting with high IW and 
ssthresh values after recovering from SYN-ACK loss, and 

completing faster than a parallel TCP New Reno flow. 

3. TSL Model 

This section develops a stochastic model of TSL startup 
algorithm that yields an analytic expression for the latency 
of a short-lived and uncongested TCP flow as a function of 
IW, ssthresh and link bandwidth-delay product (BDP). The 
aim is to gauge impact on response time of various TSL 
startup algorithms that may be used when congestion is 
wrongly inferred due to a SYN-ACK packet loss. A few 
assumptions are made: 

1. The slow-start (SS) and congestion avoidance (CA) 
algorithms are based on TCP Reno. 

2. During SS, the cwnd is increased by 1 for each ACK 
received i.e. no use of delayed ACK. 

3. During CA, the cwnd is increased by 1 per RTT.  

4. There is no data packet loss after the 3WHS, and the 
receiver advertises an infinite window size.  

5. The bottleneck link is asymmetric. 

Hence, for a given flow size L (in Bytes), the sender 
transfers maximum-sized segments (MSS) as fast as its 
congestion window (cwnd) and slow-start threshold 
(ssthresh) allow. But the sender rate may also be limited 
by the bottleneck link, which is characterized with a 
capacity C (in bps) and propagation delay d (in seconds).  

If the TCP header size is denoted as HDR (in Bytes), then 
the bandwidth-delay product in packets (BDPp) is 
expressed as: 
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The flow size in packets (Lp) is expressed as: 
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The time to transmit the header is expressed as: 
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The time to transmit the payload is expressed as: 
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The time to transmit the request is: 

    
    

 
                                                           ( ) 

And the maximum round-trip delay is given as: 

                                                          ( ) 

The model considers four possible TCP phases as 
illustrated in Figure 3.  

 

Fig. 3. Illustration of data transfer with IW=1 and 
ssthresh=2 and buffer capacity=4 segments 

3.1 Connection Establishment Phase 

Before data transfer begins, a connection must be 
established between the two end-hosts that wish to 
communicate. The connection establishment process is 
usually called three-way handshake (3WHS). Most TCP 
implementations also send the data request packet 
together with the last ACK of the 3WHS. 

The duration of the 3WHS including sending of the data 
request is derived as: 

      (      )                                         ( ) 

3.2 Slow Start Phase 

The data flow begins in slow-start using selected 
values of IW and ssthresh. During slow-start, the cwnd is 
increased exponentially until ssthresh is exceeded, the 
buffer becomes saturated, or when the flow is completed. 
For a given number of slow-start rounds (Nss), the 
attained congestion window size (CWNDss) and the total 
number of sent segments (Tss) are expressed as: 
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On simplification (4) becomes, 
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a. Condition 1 
 

If slow-start is terminated by ssthresh, the following 
equality holds true: 

                                                   (  ) 

Equation (11) simplifies to: 
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b. Condition 2 
 

 Similar to above, slow-start may be terminated due to 
buffer saturation. 

                                                     (  ) 

Equation (8) simplifies to: 
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c. Condition 3 
 

Finally, the flow completion may end slow-start 
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Equation (15) simplifies to: 
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Since slow-start must be terminated when at least one of 
the three conditions is satisfied, combining equations (12), 
(14), and (16) yields, 
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Given NSS is known, the number of packets sent in slow-
start (SSS) and the slow-start duration (TSS) can be 
calculated using the following equations. 

        ( 
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3.3 Congestion Avoidance Phase 
 

Congestion avoidance starts immediately after SS. The 
cwnd size in the first round of congestion avoidance is 
equal to ssthresh, and it is incremented by 1 MSS per RTT. 
Hence an expression can be derived for total number of 
segments sent (SCA) for a given number of round trips 
(NCA) spent in congestion avoidance. 

             (          )    (            
  )                                 (  ) 

The above expression can be written in the concise form 
below. 

     ∑(            )                             (  )

   

   

 

Equation (21) when expanded becomes: 

                    
     (     )

 
         (  ) 

To solve for NCA, two conditions are considered that 
terminate CA. 

a. Condition 1 
 

The number of remaining data segments (R) to be sent 
after slow-start is known to be, 

                                                                        (  ) 

Since congestion avoidance must terminate when these 
remaining flow segments are transmitted, then  

                                                                              (  ) 

  Substituting for SCA and R in (24), and solving the 
quadratic equation gives:  

      √[(          
 

 
)
 

   (       )]  

 (          
 

 
)                                                    (  )  

b. Condition 2 
 

Congestion avoidance may be terminated before the flow 
ends if the buffer becomes saturated. This gives a second 
equation for NCA. 
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Therefore the final expression for NCA is stated below 
as: 
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       Having derived NCA, the number of packets sent in 
congestion avoidance (SCA) and the congestion avoidance 
duration (TCA) can be calculated using the following 
equations: 

     
 

 
       (     )                      (  ) 

                                                                          (  ) 

 
3.4 Saturation Phase 
 

If congestion avoidance is terminated because the 
buffer becomes saturated, the remaining data packets are 
sent back to back at the link capacity, akin to constant bit 
rate (CBR) traffic. The total number of bytes sent in 
saturation (SSAT) and the time spent in saturation (TSAT) is 
derived as: 

     (          )    
 (   (       )     )     (  ) 
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Combining the derived expressions in (7), (19), (29) and 
(31) gives the final analytical expression for startup 
latency (T) of short-lived TCP flows. 

                                               (  ) 
 

4. Analysis and Discussion 
 
The web is essentially a large network of interlinked 
documents, photos, videos, and applications that are 
individually referred to as web objects. Web transactions 
are request-response applications, which mostly use TCP 
for reliable delivery. However, some important 
applications such as Domain Name Server (DNS) queries 
primarily use the User Datagram Protocol (UDP). The 
performance impairment due to slow startup and high 
latency depends on the types of applications using the 
network. For this research response time for web object 
retrieval is considered are defined. 

Several variants of TSL startup are possible. These can be 
divided into two classes based on minimum value of IW 
after SYN loss. 

4.1 Gentle-Start TSL Variants 

The gentle-start TSL variants react conservatively 
when loss of the SYN-ACK packet is detected. The 
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minimum value of IW is set to 1 segment after the 3WHS, 
with the standard TCP algorithm falling into this category. 
Standard TCP additionally sets the minimum ssthresh 
value to 2 segments causing a slow starting rate of 1 
segment that only increases linearly per RTT. Other 
gentle-start TSL variants are designed so that the sending 
rate is initially low but is exponentially increased by 
setting minimum ssthresh value at an intermediate or high 
level. The gentle-start variants evaluated include: 

 TSL 1, 2 (Standard TCP) 

 TSL 1, 16 

 TSL 1, 1000 

4.2 Brute-Start TSL Variants 

The brute-start TSL variants react aggressively when 
loss of the SYN-ACK packet is detected. The minimum 
value of IW is set to 3 segments after the 3WHS. Hence if 
the connection response size is less than 4KB; it is possibly 
completed in 1 RTT after the 3WHS. For larger connection 
sizes, the response time depends on the minimum 
ssthresh value, which may be set to 2 segments for a linear 
starting rate, or set arbitrarily high for an exponential 
starting rate. Three brute-start variants are studied: 

 TSL 3, 2 

 TSL 3, 16 

 TSL 3, 1000 

 
Fig. 4 TSL startup variants 

TABLE-1: Impact of TSL Startup on Web Latency 

TSL Startup 
Algorithm 

Transfer Size 

8KB 50KB 180KB 

Minimum Response Time (in RTTs) 

TCP New Reno 5 10 18 

TSL 1, 16 4 7 12 

TSL 1, 1000 4 7 8 

TSL 3, 16 3 5 10 

TSL 3, 1000 3 5 7 

Table 1 shows web object and web page response times 
(measured in units of round trips) of different TSL 
configurations in an uncongested scenario. The proposed 
TSL startup algorithm was found capable of subtracting 2-
5 round-trips from duration of short web flows in an 
uncongested scenario. and up to 11 round-trips for 
moderate flows up to 180KB. This is an important 
outcome because quickly completing connection setup and 
the initial data transfer of a few KB is critical for many 
current Internet applications. Web-based applications, for 
example, need to present the initial contents to the user in 
a handful of seconds to achieve acceptable performance. 
 

5. Conclusion 
 
Short TCP flows may suffer significant response time 
performance degradations when a small SYN control 
packet is lost or during a transient congestion period. 
Unfortunately, this creates an incentive for misbehavior by 
clients of interactive applications (e.g., gaming, telnet, 
web) to send “dummy” packets into the network at a TCP-
fair rate even when they have no data to send, thus 
improving their performance in moments when they do 
have data to send. Even though no “law” is violated in this 
way, a large-scale deployment of such an approach has the 
potential to seriously jeopardize one of the core Internet’s 
principles — statistical multiplexing. In this way, they 
become capable of developing larger congestion windows 
and improve their performance by avoiding long 
retransmission timeouts. While several solutions have 
been proposed to efficiently combat the problem, none has 
been deployed in the Internet, probably because they 
require non-negligible architectural changes.  

This work has presented an easy to implement algorithm 
that will reduce startup latency of standard TCP for the 
benefit of both Internet users and service providers. For 
example, one of the top online-based commercial stores 
(Amazon.com) recently estimated that every 100ms of 
additional latency reduces profit by 1% 19. Google also 
reported that increasing the retrieval time of its search 
page from 400ms (old page with 10 results) to 900ms 
(new page with 30 results), decreased traffic and ad 
revenues by 20% 20. A different set of results shows that 
end-users are willing to wait no longer than 4 seconds for 
a web page to be displayed 2122, or 10 seconds for a video 
streaming session to startup A, before quitting or 
restarting the connection.  

Our future work will perform simulation studies to 
measure the impact of our proposed algorithm on a 
congested Internet. The performance figures derived from 
the model in this paper account only for uncongested 
network scenarios, which is the normal condition of the 
Internet.  
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