
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1

Modeling a New Startup Algorithm for TCP New Reno

Ahmed Yusuf Tambuwal1, Rafaello Secchi2

1Computer Science Unit, Usmanu Danfodiyo University, Sokoto (UDUS)
2Electronics Research Group, University of Aberdeen, UK

---***---

Abstract - Standard TCP (New Reno) is vulnerable to
startup effects that cause loss of connection setup packets or
result in long round trip time (RTT) greater than 1-second.
When either of these events occurs, TCP New Reno resets its
congestion state by reducing initial congestion window (IW)
and slow-start threshold (ssthresh) values to 1 and 2
maximum segment size (MSS) respectively. In this condition,
TCP requires multiple round trips to complete delay-
sensitive transactions, thus resulting in poor user-
experience. This paper presents a new congestion control
algorithm that makes TCP more responsive by increasing its
robustness against startup losses. Our main contribution in
this paper is derivation of a stochastic model that yields a
simple expression for computing the latency of a short-lived
transaction as a function of IW, ssthresh and bandwidth-
delay product (BDP) of an uncongested link.

Key Words: Transmission Control Protocol, Congestion
Control, Startup, Responsiveness, Interactive Applications

1. Introduction

The transmission control protocol (TCP) 1 is the main
protocol used on the Internet for reliable delivery of data
packets between communicating hosts. A TCP client
initiates a connection to a remote Internet server using a
three-way handshake (3WHS) procedure. In general, the
client then submits a data request, which is processed by
the server resulting in a data response. Once data
transmission starts, TCP attempts to maximize throughput
without causing congestion on the network. Several works
have focused on designing new TCP algorithms with better
throughput performance such as in 2345.

Conversely, throughput performance is not the main
requirement of short-lived interactive applications (e.g.
web browsing and E-commerce), which account for a
majority of TCP flows 67. Quite different from bulk
transfers, interactive applications demand speedy delivery
of few data chunks across the Internet within short delay
bounds. Despite many algorithms proposed to solve this
important problem 89101112, it still remains an open
challenge for TCP.

This paper proposes a new algorithm that aims to make
standard TCP (New Reno) more responsive by increasing
its robustness against startup losses. TCP New Reno
interprets the loss of connection setup packets (i.e. SYN or
SYN-ACK) as a signal for serious network congestion,
prompting a sender to reduce its initial congestion

window (IW) to 1 maximum segment size (MSS) and its
slow-start threshold (ssthresh) to 2 MSS 13. This response
increases latency of short-lived interactive applications by
several round trips, thus significantly reducing end-user
Internet experience.

While ignoring the SYN congestion signal and starting with
very large IW and ssthresh values negates TCP
conservative principles, there are strong motives to use a
less conservative approach. Firstly, random packet loss is
quite a common occurrence when data traverses
wireless/mobile network links e.g. due to high contention
between multiple users sharing the radio channel, poor
weather conditions, or when a mobile host is obstructed
and suffers temporary link outages 1415. Also, network
middle boxes such as firewalls, proxies, and network
address translators, can erroneously drop SYN packets
due to suspicion of unwanted or malicious traffic 1617. In
a more general context, TCP inherently causes loss of
packets (including the SYN and SYN-ACK) when probing
for available capacity and trying to maximize throughput
181920.

We therefore propose a new algorithm called ‘TCP SYN
Loss (TSL) Startup Algorithm’ that uses a halving
congestion response function during startup, which is less
conservative than the current standard. After connection
setup is completed, standard TCP congestion control is
applied for the data transfer phase.

The rest of this paper is organized as follows: Section 2
presents the TSL startup algorithm that we propose for
use when congestion is signalled during the connection
setup phase of a new connection. Section 3 then develops a
stochastic model of the proposed algorithm with a
discussion of its impact on web transactions in section 4.
Finally, section 5 concludes the paper and presents future
work.

2. TSL Congestion Control Algorithm

Deviating from current standard, the proposed TSL startup
algorithm reduces the default startup rate of a new TCP
flow by a maximum factor of 2 when the SYN or SYN-ACK
packet is dropped during connection establishment.

If a further loss occurs before the connection is established,
then the algorithm reverts to the standard TCP behaviour
by resetting the Initial congestion window to 1 MSS and
Slow-start threshold to 2 MSS.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2

 (a) (b)

Fig. 1 Illustration of a typical TCP transaction (a) without
SYN loss and (b) with SYN loss

Our proposed algorithm uses the following set of
instructions.

 () *

 (

)

 (

)

+

Since the aim of the TSL algorithm is to enable a new flow
to complete short data transfers quickly using slow-start, it
attempts to keep startup variables as high as possible even
when congestion is signalled. Hence in addition to rate
halving, lower bounds (i.e. IWmin and ssthreshmin) are
defined in case the default IW and ssthresh values are
initially low e.g. when implementing standard RFC 5681,
which limits IW to 3 MSS.

It can be argued that if the SYN congestion signal was really
due to high network utilisation, then the TSL flow remains
aggressive for only 1 round trip time (RTT) before
receiving additional feedback and falling back to standard
TCP congestion behaviour. Conversely, if the signal is only
due to transient congestion or transmission errors, slow-
start quickly grows the congestion window and completes
a short data transfer quickly, to the benefit of the end-user.

Figure 2 illustrates how TSL startup enables a short flow to
complete faster than a parallel TCP New Reno flow. Both
flows drop the SYN-ACK packet at time t1. However when
data transmission eventually begins at t2, the TSL flow
completes faster because it sets IW to 3 MSS and ssthresh

to 40 MSS (compared to 1 MSS and 2 MSS respectively for
the TCP New Reno flow).

Fig. 2 Illustration of a TSL flow starting with high IW and
ssthresh values after recovering from SYN-ACK loss, and

completing faster than a parallel TCP New Reno flow.

3. TSL Model

This section develops a stochastic model of TSL startup
algorithm that yields an analytic expression for the latency
of a short-lived and uncongested TCP flow as a function of
IW, ssthresh and link bandwidth-delay product (BDP). The
aim is to gauge impact on response time of various TSL
startup algorithms that may be used when congestion is
wrongly inferred due to a SYN-ACK packet loss. A few
assumptions are made:

1. The slow-start (SS) and congestion avoidance (CA)
algorithms are based on TCP Reno.

2. During SS, the cwnd is increased by 1 for each ACK
received i.e. no use of delayed ACK.

3. During CA, the cwnd is increased by 1 per RTT.

4. There is no data packet loss after the 3WHS, and the
receiver advertises an infinite window size.

5. The bottleneck link is asymmetric.

Hence, for a given flow size L (in Bytes), the sender
transfers maximum-sized segments (MSS) as fast as its
congestion window (cwnd) and slow-start threshold
(ssthresh) allow. But the sender rate may also be limited
by the bottleneck link, which is characterized with a
capacity C (in bps) and propagation delay d (in seconds).

If the TCP header size is denoted as HDR (in Bytes), then
the bandwidth-delay product in packets (BDPp) is
expressed as:

 ()
 ()

The flow size in packets (Lp) is expressed as:

1

2

3

t1 t2
TSL

Completion

Time

TCP

Congestion

Window

(Segments)

TCP New Reno

Flow with

 SYN-ACK Loss

at time t1

TSL Flow with

SYN-ACK Loss

at time t1

Time

TCP New Reno

Completion

Time

40

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3

 ⌈

⌉ ()

The time to transmit the header is expressed as:

 ()

The time to transmit the payload is expressed as:

 ()

The time to transmit the request is:

 ()

And the maximum round-trip delay is given as:

 ()

The model considers four possible TCP phases as
illustrated in Figure 3.

Fig. 3. Illustration of data transfer with IW=1 and
ssthresh=2 and buffer capacity=4 segments

3.1 Connection Establishment Phase

Before data transfer begins, a connection must be
established between the two end-hosts that wish to
communicate. The connection establishment process is
usually called three-way handshake (3WHS). Most TCP
implementations also send the data request packet
together with the last ACK of the 3WHS.

The duration of the 3WHS including sending of the data
request is derived as:

 () ()

3.2 Slow Start Phase

The data flow begins in slow-start using selected
values of IW and ssthresh. During slow-start, the cwnd is
increased exponentially until ssthresh is exceeded, the
buffer becomes saturated, or when the flow is completed.
For a given number of slow-start rounds (Nss), the
attained congestion window size (CWNDss) and the total
number of sent segments (Tss) are expressed as:

 ()

 ∑ ()

On simplification (4) becomes,

 (
) ()

a. Condition 1

If slow-start is terminated by ssthresh, the following
equality holds true:

 ()

Equation (11) simplifies to:

 (

) ()

b. Condition 2

 Similar to above, slow-start may be terminated due to
buffer saturation.

 ()

Equation (8) simplifies to:

 (

) ()

c. Condition 3

Finally, the flow completion may end slow-start

 ()

Equation (15) simplifies to:

 (

) ()

Since slow-start must be terminated when at least one of
the three conditions is satisfied, combining equations (12),
(14), and (16) yields,

 ⌈ (

)⌉ ()

Given NSS is known, the number of packets sent in slow-
start (SSS) and the slow-start duration (TSS) can be
calculated using the following equations.

 (
) ()

 ()

Client

SYN

Client

Request

1 RTT 2 RTT 3 RTT

Slow Start Phase Saturation Phase

4 RTT

Congestion Avoidance Phase

5 RTT 6 RTT 8 RTT 7 RTT 9 RTT T=0

IW = 1, SSTHRESH = 2, BDP = 4

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4

3.3 Congestion Avoidance Phase

Congestion avoidance starts immediately after SS. The
cwnd size in the first round of congestion avoidance is
equal to ssthresh, and it is incremented by 1 MSS per RTT.
Hence an expression can be derived for total number of
segments sent (SCA) for a given number of round trips
(NCA) spent in congestion avoidance.

 () (
) ()

The above expression can be written in the concise form
below.

 ∑() ()

Equation (21) when expanded becomes:

 ()

 ()

To solve for NCA, two conditions are considered that
terminate CA.

a. Condition 1

The number of remaining data segments (R) to be sent
after slow-start is known to be,

 ()

Since congestion avoidance must terminate when these
remaining flow segments are transmitted, then

 ()

 Substituting for SCA and R in (24), and solving the
quadratic equation gives:

 √[(

)

 ()]

 (

) ()

b. Condition 2

Congestion avoidance may be terminated before the flow
ends if the buffer becomes saturated. This gives a second
equation for NCA.

 ⌈ ⌉ ()

Therefore the final expression for NCA is stated below
as:

 ⌈√(

)

 ()

 (

) ⌈ ⌉ ⌉ ()

 Having derived NCA, the number of packets sent in
congestion avoidance (SCA) and the congestion avoidance
duration (TCA) can be calculated using the following
equations:

 () ()

 ()

3.4 Saturation Phase

If congestion avoidance is terminated because the
buffer becomes saturated, the remaining data packets are
sent back to back at the link capacity, akin to constant bit
rate (CBR) traffic. The total number of bytes sent in
saturation (SSAT) and the time spent in saturation (TSAT) is
derived as:

 ()
 (()) ()

 ()

Combining the derived expressions in (7), (19), (29) and
(31) gives the final analytical expression for startup
latency (T) of short-lived TCP flows.

 ()

4. Analysis and Discussion

The web is essentially a large network of interlinked
documents, photos, videos, and applications that are
individually referred to as web objects. Web transactions
are request-response applications, which mostly use TCP
for reliable delivery. However, some important
applications such as Domain Name Server (DNS) queries
primarily use the User Datagram Protocol (UDP). The
performance impairment due to slow startup and high
latency depends on the types of applications using the
network. For this research response time for web object
retrieval is considered are defined.

Several variants of TSL startup are possible. These can be
divided into two classes based on minimum value of IW
after SYN loss.

4.1 Gentle-Start TSL Variants

The gentle-start TSL variants react conservatively
when loss of the SYN-ACK packet is detected. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 5

minimum value of IW is set to 1 segment after the 3WHS,
with the standard TCP algorithm falling into this category.
Standard TCP additionally sets the minimum ssthresh
value to 2 segments causing a slow starting rate of 1
segment that only increases linearly per RTT. Other
gentle-start TSL variants are designed so that the sending
rate is initially low but is exponentially increased by
setting minimum ssthresh value at an intermediate or high
level. The gentle-start variants evaluated include:

 TSL 1, 2 (Standard TCP)

 TSL 1, 16

 TSL 1, 1000

4.2 Brute-Start TSL Variants

The brute-start TSL variants react aggressively when
loss of the SYN-ACK packet is detected. The minimum
value of IW is set to 3 segments after the 3WHS. Hence if
the connection response size is less than 4KB; it is possibly
completed in 1 RTT after the 3WHS. For larger connection
sizes, the response time depends on the minimum
ssthresh value, which may be set to 2 segments for a linear
starting rate, or set arbitrarily high for an exponential
starting rate. Three brute-start variants are studied:

 TSL 3, 2

 TSL 3, 16

 TSL 3, 1000

Fig. 4 TSL startup variants

TABLE-1: Impact of TSL Startup on Web Latency

TSL Startup
Algorithm

Transfer Size

8KB 50KB 180KB

Minimum Response Time (in RTTs)

TCP New Reno 5 10 18

TSL 1, 16 4 7 12

TSL 1, 1000 4 7 8

TSL 3, 16 3 5 10

TSL 3, 1000 3 5 7

Table 1 shows web object and web page response times
(measured in units of round trips) of different TSL
configurations in an uncongested scenario. The proposed
TSL startup algorithm was found capable of subtracting 2-
5 round-trips from duration of short web flows in an
uncongested scenario. and up to 11 round-trips for
moderate flows up to 180KB. This is an important
outcome because quickly completing connection setup and
the initial data transfer of a few KB is critical for many
current Internet applications. Web-based applications, for
example, need to present the initial contents to the user in
a handful of seconds to achieve acceptable performance.

5. Conclusion

Short TCP flows may suffer significant response time
performance degradations when a small SYN control
packet is lost or during a transient congestion period.
Unfortunately, this creates an incentive for misbehavior by
clients of interactive applications (e.g., gaming, telnet,
web) to send “dummy” packets into the network at a TCP-
fair rate even when they have no data to send, thus
improving their performance in moments when they do
have data to send. Even though no “law” is violated in this
way, a large-scale deployment of such an approach has the
potential to seriously jeopardize one of the core Internet’s
principles — statistical multiplexing. In this way, they
become capable of developing larger congestion windows
and improve their performance by avoiding long
retransmission timeouts. While several solutions have
been proposed to efficiently combat the problem, none has
been deployed in the Internet, probably because they
require non-negligible architectural changes.

This work has presented an easy to implement algorithm
that will reduce startup latency of standard TCP for the
benefit of both Internet users and service providers. For
example, one of the top online-based commercial stores
(Amazon.com) recently estimated that every 100ms of
additional latency reduces profit by 1% 19. Google also
reported that increasing the retrieval time of its search
page from 400ms (old page with 10 results) to 900ms
(new page with 30 results), decreased traffic and ad
revenues by 20% 20. A different set of results shows that
end-users are willing to wait no longer than 4 seconds for
a web page to be displayed 2122, or 10 seconds for a video
streaming session to startup A, before quitting or
restarting the connection.

Our future work will perform simulation studies to
measure the impact of our proposed algorithm on a
congested Internet. The performance figures derived from
the model in this paper account only for uncongested
network scenarios, which is the normal condition of the
Internet.

TSL

Startup

Variants

Gentle Start

(IW = 1)

Brute Start

(IW = 3)

Slow Speed

(ssthresh = 2)

Controlled Speed

(ssthresh = 16)

Infinitely High Speed

(ssthresh = 1000)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 6

References

1. W. R. Stevens, TCP/IP Illustrated Volume I: The
Protocols, New York:Addison-Wesley, 1994.

2. A. Baiocchi, A. Castellani, and F. Vacirca, “YeAH-
TCP: Yet another highspeed TCP,” in Proceedings
of PFLDNET, Los Angeles, CA, February 2007.

3. S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-
friendly high-speed TCP variant,” SIGOPS Oper.
Syst. Rev., 42(5), 2008.

4. R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H.
Wassel, M. Ghobadi, A. Vahdat, Y. Wang, D.
Wetherall, and D. Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” ACM
SIGCOMM Comp Commun. Review, vol. 45, no. 4,
pp. 537–550, 2015.

5. N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh et
al., “BBR: congestion-based congestion control,”
Commun. ACM, vol. 60, no. 2, pp. 58–66, 2017.

6. P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K.
Cho, "Seven Years and One Day: Sketching the
Evolution of Internet Traffic," INFOCOM 2009,
IEEE, Rio de Janeiro, 2009, pp. 711-719.

7. “Scaling in Internet Traffic: A 14 Year and 3 Day
Longitudinal Study with Multiscale Analyses and
Random Projections,” IEEE/ACM Trans. on
Networking, vol. 24 (4), pp. 2152-2165, 2017.

8. N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert,
A. Agarwal, A. Jain, and N. Sutin, “An Argument for
Increasing TCP’s Initial Congestion Window,” ACM
Comput. Commun. Rev., 40, 2010.

9. S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B.
Raghavan. “TCP Fast Open,” In Proc. of the ACM
Int. Conf. on Emerging Networking Experiments
and Technologies (CoNEXT), Dec. 2011.

10. H. Sangtae, R. Injong, “Taming the elephants: New
TCP slow start,” Elsevier Computer Networks, vol.
55 (9), pp. 2092-2110, Jun, 2011.

11. T. Flach et.al, “Reducing web latency: the Virtue of
Gentle Aggression”, in Proc. of ACM SIGCOMM,
(Hong Kong, China), pp. 159-170, 2013.

12. B. Briscoe et.al, “Reducing Internet Latency: A
Survey of Techniques and their merits,” in IEEE
Commun. Surveys & Tutorials, vol. 18 (2), pp.
2149-2196, 2016.

13. M. Allman, V. Paxsons, “TCP Congestion Control,”
IETF RFC 5681, Sep. 2009.

14. L. Angrisani, and M. Vadursi, "Cross-Layer
Measurements for a Comprehensive
Characterization of Wireless Networks in the
Presence of Interference," IEEE Trans. on
Instrumentation and Measurement, vol. 56, (4),
pp.1148-1156, 2007.

15. A. Sheth, S. Nedevschi, R. Patra, S. Surana,
L. Subramanian, and E. Brewer, “Packet Loss
Characterization in WiFi-based Long Distance
Networks,” IEEE INFOCOM, Alaska, USA, 2007.

16. A. Medina, M. Allman, and S. Floyd, “Measuring
Interactions Between Transport Protocols and
Middleboxes,” in Proceedings of the 4th ACM
SIGCOMM conf. on Internet measurement,
Taormina, Sicily, 2004, pp. 336-341.

17. W. Zhaoguang, Z. Qian, Q. Xu, Z. Mao, and M.
Zhang, "An untold story of middleboxes in cellular
networks," ACM SIGCOMM Comp. Commun.
Review, vol. 41, (4), pp. 374-385, 2011.

18. Akamai, “State of the Internet,” [online]. Available:
http://www.akamai.com/html/about/press/rele
ases/2013/press_101613.html (Accessed: 14
October 2013).

19. G. Linden, “Make Data Useful” [online]. Available:
http://sites.google.com/site/glinden/Home/Stanf
ordDataMining.2006-11-28.ppt . Retrieved 20
Mar. 2014.

20. Nokia Siemens Network,
http://br.nsn.com/file/2103/latencywhitepaperp
rintversion White paper. Retreieved 20 Mar.
2014.

21. Estimating end-to-end performance in IP
networks for data applications, ITU-T Rec. G.1030,
2005.

22. G. Giambene, “QOS requirements for multimedia
services,” in Resource Management in Satellite
Networks Optimization and Cross-Layer Design,
New York: Springer, 2007, ch. 3, pp. 67-92.

A. Wang, J. Kurose, P. Shenoy, and D. Towsley,
“Multimedia streaming via tcp: an analytic
performance study,” in MULTIMEDIA ’04: Proc. of
the 12th annual ACM international conference on
Multimedia, New York, 2004, pp. 908-915.

http://www.akamai.com/html/about/press/releases/2013/press_101613.html
http://www.akamai.com/html/about/press/releases/2013/press_101613.html
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://br.nsn.com/file/2103/latencywhitepaperprintversion
http://br.nsn.com/file/2103/latencywhitepaperprintversion

