
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1923

Dynamic Implementation of Stack Using Single Linked List

Dr. Mahesh K Kaluti1, GOVINDARAJU Y2, SHASHANK A R3, Harshith K S4

1Assistant professor, CSE Dept. of Computer science and Engineering PESCE, Mandya

2,3,4 M tech, CSE Dept. of Computer science and Engineering PESCE, Mandya
---***---
Abstract -This paper gives the general overview of linked list
and its various types. This research papers covers a brief
history of the stacks and various operations of stack that is
insertion at the top, deletion from the top, display of stack
elements. In this we focus on how to insert an element in to
stack, delete an item from the stack and display stack elements
by using single linked list with program code.

Key Words: Node; stack; linked list; top; data structure

1. INTRODUCTION

A linked list, in simple terms, is a linear collection of data
elements. These data elements are called nodes. Linked list is
a data structure which in turn can be used to implement
other data structures. Thus, it acts as a building block to
implement data structures such as stacks, queues, and their
variations. A linked list can be perceived as a train or a
sequence of nodes in which each node contains one or more
data fields and a pointer to the next node.

2. TYPES OF LINKED LIST

Linked lists are classified into following categories
depending upon the number of pointers on the basis of
requirement and usage.

2.1 SINGLE LINKED LISTS

A singly linked list is the simplest type of linked list in which
every node contains some data and a pointer to the next
node of the same data type. By saying that the node contains
a pointer to the next node, we mean that the node stores the
address of the next node in sequence. A singly linked list
allows traversal of data only in one way.

2.2 CICULAR LINKED LISTS

In a circular linked list, the last node contains a pointer to
the first node of the list. We can have a circular singly linked
list as well as a circular doubly linked list. While traversing a
circular linked list, we can begin at any node and traverse
the list in any direction, forward or backward, until we reach
the same node where we started. Thus, a circular linked list
has no beginning and no ending.

2.2 DOUBLE LINKED LISTS

A doubly linked list or a two-way linked list is a more
complex type of linked list which contains a pointer to the
next as well as the previous node in the sequence. Therefore,
it consists of three parts data, a pointer to the next node, and
a pointer to the previous node as shown in Fig.

2.3 CICULAR DOUBLE LINKED LISTS

A circular doubly linked list or a circular two-way linked list
is a more complex type of linked list which contains a
pointer to the next as well as the previous node in the
sequence. The difference between a doubly linked and a
circular doubly linked list is same as that exists between a
singly linked list and a circular linked list. The circular
doubly linked list does not contain NULL in the previous field
of the first node and the next field of the last node. Rather,
the next field of the last node stores the address of the first
node of the list, i.e., START. Similarly, the previous field of
the first field stores the address of the last node. A circular
doubly linked list is shown in Fig.

2.4 HEADER LINKED LISTS

A header linked list is a special type of linked list which
contains a header node at the beginning of the list. So, in a
header linked list, START will not point to the first node of
the list but START will contain the address of the header
node. The following are the two variants of a header linked
list.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1924

Grounded header linked list which stores NULL in the next
field of the last node.

Circular header linked list which stores the address of the
header node in the next field of the last node. Here, the
header node will denote the end of the list. Look at Fig which
shows both the types of header linked lists.

3. STACKS

Stack is an important data structure which stores its
elements in an ordered manner. A stack is a linear data
structure which uses the same principle, i.e., the elements in
a stack are added and removed only from one end, which is
called the TOP. Hence, a stack is called a LIFO (Last-In-First-
Out) data structure, as the element that was inserted last is
the first one to be taken out.

3.1 OPERATIONS ON A STACK

A stack supports three basic operations: push, pop, and peek.
The push operation adds an element to the top of the stack
and the pop operation removes the element from the top of
the stack. The peek operation returns the value of the
topmost element of the stack.

3.1.1 PUSH OPERATION

The push operation is used to insert an element into the
stack. The new element is added at the topmost position of
the stack. However, before inserting the value, we must first
check if TOP=MAX–1, because if that is the case, then the
stack is full and no more insertions can be done. If an
attempt is made to insert a value in a stack that is already
full, an OVERFLOW message is printed.

3.1.2 POP OPERATION

The pop operation is used to delete the topmost element
from the stack. However, before deleting the value, we must
first check if TOP=NULL because if that is the case, then it
means the stack is empty and no more deletions can be done.
If an attempt is made to delete a value from a stack that is
already empty, an UNDERFLOW message is printed.

3.1.3 PEEK OPERATION

Peek is an operation that returns the value of the topmost
element of the stack without deleting it from the stack.
However, the Peek operation first checks if the stack is

empty, i.e., if TOP = NULL, then an appropriate message is
printed, else the value is returned

4. IMPLEMENTION OF STACK USING SINGLE LINKED
LIST

PUSH OPERATION

The push operation is used to insert an element into the
stack. The new element is added at the topmost position of
the stack. Consider the linked stack shown in Fig

Linked stack

To insert an element with value 9, we first check if
TOP=NULL. If this is the case, then we allocate memory for a
new node, store the value in its DATA part and NULL in its
NEXT part. The new node will then be called TOP. However,
if TOP!=NULL, then we insert the new node at the beginning
of the linked stack and name this new node as TOP. Thus, the
updated stack becomes as shown in Fig.

Linked stack after inserting a new node

POP OPERATION

The pop operation is used to delete the topmost element
from a stack. However, before deleting the value, we must
first check if TOP=NULL, because if this is the case, then it
means that the stack is empty and no more deletions can be
done. If an attempt is made to delete a value from a stack
that is already empty, an UNDERFLOW message is printed.
Consider the stack shown in Fig

Linked stack

In case TOP!=NULL, then we will delete the node pointed by
TOP, and make TOP point to the second element of the linked
stack. Thus, the updated stack becomes as shown in Fig

Linked stack after deletion of the topmost element

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1925

5. CODE FOR IMPLEMENTATION OF STACK USING
SINGLE LINKED LIST

5.1 PUSH OPERATION

void push(int st[], int val)
{
if(top == MAX-1)
{
printf("\n STACK OVERFLOW");
}
else
{
top++;
st[top] = val;
}
}

5.2 POP OPERATION

int pop(int st[])
{
int val;
if(top == -1)
{
printf("\n STACK UNDERFLOW");
return -1;
}
else
{
val = st[top];
top--;
return val;
}
}

5.3 PEEK OPERATION

int peek(int st[])
{
if(top == -1)
{
printf("\n STACK IS EMPTY");
return -1;
}
else
return (st[top]);
}

6. CONCLUSION

The technique of creating a stack using array is easy but the
drawback is that the array must be declared to have some
fixed size. In case the stack is a very small one or its
maximum size is known in advance, then the array
implementation of the stack gives an efficient
implementation. But if the array size cannot be determined
in advance, then the other alternative, i.e., linked

representation, is used. The storage requirement of linked
representation of the stack with n elements is O(n), and the
typical time requirement for the operations is O(1).

7. REFERENCES

1. Allen Newell, Cliff Shaw and Herbert A. Simon
"Linked List".

2. Search engines like google and yahoo.

3. T. Lev-Ami and S. Sagiv. TVLA: A system for
implementing static analyses. InSAS 00: Static
Analysis Symposium, volume 1824 ofLNCS, pages
280–301.Springer-Verlag, 2000.

4. A. Møller and M. I. Schwartzbach. The pointer
assertion logic engine.In PLDI 01: Programming
Language Design and Implementation,pages 221–
231, 2001.

5. G. Nelson. Verifying reachability invariants of
linked structures.InPOPL 83: Principles of
Programming Languages, pages 38–47.ACM Press,
1983.

6. Collins, William J. (2005) [2002]. Data Structures
and the Java Collections Framework. New York:
McGraw Hill. pp. 239–303. ISBN 0-07-282379-8.

7. "Definition of a linked list". National Institute of
Standards and Technology. 2004-08-16. Retrieved
2004-12-14.

8. Antonakos, James L.; Mansfield, Kenneth C., Jr.
(1999). Practical Data Structures Using C/C++.
Prentice-Hall. pp. 165–190. ISBN 0-13-280843-9.

9. Cormen, Thomas H.; Charles E. Leiserson; Ronald L.
Rivest; Clifford Stein (2003). Introduction to
Algorithms. MIT Press. pp. 205–213 & 501–505.
ISBN 0-262-03293-7

10. Green, Bert F. Jr. (1961). "Computer Languages for
Symbol Manipulation". IRE Transactions on Human
Factors in Electronics (2): 3–
8.doi:10.1109/THFE2.1961.4503292

11. McCarthy, John (1960). "Recursive Functions of
Symbolic Expressions and Their Computation by
Machine, Part I". Communications of the ACM 3 (4):
184.doi:10.1145/367177.367199

12. Juan, Angel (2006). "Ch20 –Data Structures; ID06 -
PROGRAMMING with JAVA (slide part of the book
"Big Java", by CayS. Horstmann)" (PDF). p. 3

