
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 549

Review on Java Database Connectivity

Ms. Poonam Walimbe

Lecturer, Department of Computer Engineering, V.P.M’s Polytechnic, Thane, Maharashtra
---***---

Abstract - Java Database with Database. JDBC is used to
interact with various type of Database such as Oracle, MS
Access, My SQL and SQL Server. JDBC can also be defined as the
platform-independent interface between a relational database
and Java programming. It allows java program to execute SQL
statement and retrieve result from database. JDBC API
provides set of interfaces and there are different
implementations respective to different databases. This paper
emphasis on its history and implementation, architecture and
JDBC drivers.

Key Words: JDBC, JDBC API, JVM, Database, SQL, Servlet,
JSP

1. INTRODUCTION

JDBC stands for Java Database Connectivity, which is a
standard Java API for database-independent connectivity
between the Java programming language and a wide range
of databases.

The JDBC library includes APIs for each of the tasks
mentioned below that are commonly associated with
database usage.

 Making a connection to a database.

 Creating SQL or MySQL statements.

 Executing SQL or MySQL queries in the database.

 Viewing & Modifying the resulting records.

Fundamentally, JDBC is a specification that provides a
complete set of interfaces that allows for portable access to
an underlying database. Java can be used to write different
types of executable, such as –

 Java Applications

 Java Applets

 Java Servlets

 Java Server Pages (JSPs)

 Enterprise JavaBeans (EJBs).

All of these different executable are able to use a JDBC
driver to access a database, and take advantage of the
stored data.

JDBC provides the same capabilities as ODBC, allowing Java
programs to contain database-independent code.

1.1 Creating JDBC Application

There are following six steps involved in building a JDBC
application –

• Import the packages: Requires that you include the
packages containing the JDBC classes needed for database
programming. Most often, using import java.sql.* will suffice.

• Register the JDBC driver: Requires that you initialize a
driver so you can open a communication channel with the
database.

• Open a connection: Requires using the Driver Manager. Get
Connection () method to create a connection object, which
represents a physical connection with the database.

• Execute a query: Requires using an object of type
Statement for building and submitting an SQL statement to
the database.

• Extract data from result set: Requires that you use the
appropriate Result Set.getXXX() method to retrieve the data
from the result set.

• Clean up the environment: Requires explicitly closing all
database resources versus relying on the JVM's garbage
collection.

1.2 Common JDBC Components

The JDBC API provides the following interfaces and classes:

• Driver Manager: This class manages a list of database
drivers. Matches connection requests from the java
application with the proper database driver using
communication sub protocol.

The first driver that recognizes a certain sub protocol under
JDBC will be used to establish a database Connection.

• Driver: This interface handles the communications with the
database server. You will interact directly with Driver
objects very rarely. Instead, you use Driver Manager objects,
which manages objects of this type. It also abstracts the
details associated with working with Driver objects.

• Connection: This interface with all methods for contacting
a database. The connection object represents communication
context, i.e., all communication with database is through
connection object only.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 550

• Statement: You use objects created from this interface to
submit the SQL statements to the database. Some derived
interfaces accept parameters in addition to executing stored
procedures.

• Result Set: These objects hold data retrieved from a
database after you execute an SQL query using Statement
objects. It acts as an iterator to allow you to move through its
data.

• SQL Exception: This class handles any errors that occur in a
database application.

1.3 JDBC Connection:

The programming involved to establish a JDBC connection is
fairly simple. Here are these simple four steps:

1. Import JDBC Packages: Add import statements to your
Java program to import required classes in your Java code.

2. Register JDBC Driver: This step causes the JVM to load the
desired driver implementation into memory so it can fulfill
your JDBC requests.

3. Database URL Formulation: This is to create a properly
formatted address that points to the database to which you
wish to connect.

4. Create Connection Object: Finally, code a call to the Driver
Manager object's get Connection () method to establish
actual database connection.

5. Close Connections : Finally, we have to explicitly close the
connections that we have opened.

2. JDBC Architecture:

The JDBC API supports both two-tier and three-tier
processing models for database access but in general, JDBC
Architecture consists of two layers :

• JDBC API: This provides the application-to-JDBC Manager
connection.

• JDBC Driver API: This supports the JDBC Manager-to-
Driver Connection.

The JDBC API uses a driver manager and database-specific
drivers to provide transparent connectivity to
heterogeneous databases.

The JDBC driver manager ensures that the correct driver is
used to access each data source. The driver manager is
capable of supporting multiple concurrent drivers connected
to multiple heterogeneous databases.

Following is the architectural diagram, which shows the
location of the driver manager with respect to the JDBC
drivers and the Java application :

Fig -1: JDBC Architecture overview

3. CONCLUSIONS

We presented the JDBC, an API(application programming
interface) for java that allows the Java programmer to access
the Database. The JDBC API consists of a numbers of classes
and interfaces, written in java programming language, they
provides a numbers of methods for updating and querying a
data in a database. It is a relational database oriented driver.
It allows the java application to reuse database connection
the connection that has been created already instead of
creating a new connection.

REFERENCES

[1]http://en.wikipedia.org/wiki/Java_Database_Connectivit
y

[2]http://searchoracle.techtarget.com/definition/JavaDatab
ase-Connectivity

[3]http://docs.oracle.com/javase/tutorial/jdbc/overview
/architecture.html

[4]http://www.tutorialspoint.com/jdbc/jdbcintroduction.ht
m

[5]http://en.wikipedia.org/wiki/JDBC_driver

[6]http://www.tutorialspoint.com/jdbc/jdbcdrivertypes.ht
m

http://searchoracle.techtarget.com/definition/JavaDatabase-Connectivity
http://searchoracle.techtarget.com/definition/JavaDatabase-Connectivity

