
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 44

Survey On Kernel Level Encryption

Prof. T. R. Shinde1, Prof. M. U. Sanap2, Prof. N. M. Karolia3

1,2,3 Professor, Dept. of Information Technology, Pimpri Chinchwad Polytechnic, Pune, Maharashtra, India
---***---

Abstract - Most operating system controls access to files
through a system of user identification and permissions, which
provides an adequate level of security for most purposes.
However the persistent nature of disk storage creates a
vulnerability that operating system permission cannot redress.
Thus dealing with file that must remain confidential,
information on the disk must be stored in such a way that even
if the integrity of the physical media is compromised, the
information stored on it remains safe.

This project deals with modifications to the Linux Operating
System Kernel to provide encrypted file system support.
Security to the user data will be provided by embedding
encryption/decryption algorithm into device driver. So, when
user writes data onto the device, it’s device driver will encrypt
the data and store onto the storage device (part of RAM).
Similarly, while user request for the data from the device, it’s
device driver will retrieve and decrypt that data and this
decrypted data can be viewed by user. Hence, this concept
guarantees that no file information will ever be stored on that
device in clear format. Thus, even if the security of the disk
itself is compromised, no data may be obtained from it without
knowledge of the encryption key.

Key Words: Encryption, Data Security, Decryption, RC4
Algorithm, Linux Kernel Level.

1. INTRODUCTION

1.1 BACKGROUND

The LINUX is one of the most powerful and widely used OS in
the computer world. It is known for its openness, robustness,
and security. The LINUX professionals always love working
with this OS and they use this OS for performing various task
like programming, administration, networking and other
application oriented tasks.

Most operating systems control access to files through a
system of user identification and permissions, which
provides an adequate level of security for most purposes.
However the persistent nature of disk storage creates a
vulnerability that operating system permissions cannot
redress. Thus when dealing with files that must remain
confidential, information on the disk must be stored in such
a way that even if the integrity of the physical media is
compromised, the information stored on it remains safe.

This project deals with the modifications to the Linux
operating system kernel to provide encrypted file system
support. Security to the user data will be provided by

embedding encryption/decryption algorithm into device
driver. So, when user writes data onto the device, its device
driver will encrypt the data and store onto storage device
(part of RAM). Similarly, while user requests for data from
the device, it’s device driver will retrieve and decrypt that
data and this decrypted data can be viewed by the user.
Hence, this concept guarantees that no file information will
ever be stored on that device in clear format. Thus, even if
the security of the disk itself is compromised, no data may be
obtained from it without knowledge of the encryption key.

1.2 RELEVANCE

Many encryption programs exist for Unix-based machines
that can provide above mentioned type of security. Most run
as command line utilities and work on a file-by file basis, i.e.,
the user creates a file using one program and then runs the
encryption program separately to protect it. However, these
utilities are typically awkward to use as they require the
time-consuming and tedious ritual of running a separate
program twice for every access to a confidential file. Further,
command-line encryption utilities suffer from three
potential security compromises that stem from human
neglect or error. First and most obvious, if a user ever forgets
to run the encryption program after accessing a file the data
will reside on the disk in a vulnerable form. Second, the user
must remember that deleting the unencrypted copy of the
file usually won't remove the data from the disk. In most
operating systems, deleting a file means its disk space has
been marked available for future use. The user needs to
remember to take whatever extra steps necessary to actually
remove the unencrypted data from the disk. Finally, many
applications create temporary files that store unencrypted
pieces of your confidential data elsewhere on the disk. The
user must make sure these temporary files are wiped off the
disk to prevent a security compromise.

Encryption at kernel level substantially improves upon the
security of command-line utilities by encrypting an entire
file system. This approach has several advantages.
Encryption at kernel level transparently encrypts and
decrypts all data stored in the file system which ensures no
information is ever in clear form .This eliminates the
problems of forgetting to encrypt a file when done, dealing
with the residual images of deleted files on the disk, and
keeping track of temporary files.

1.3 ORGANISAION OF PROJECT REPORT

The rest of this report is structured as follows. We describe
literature survey in chapter 2. In chapter 3 we describe the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 45

existing of different file system. In chapter 4 we describe
proposed approach. In chapter 5 we specify software
requirement specification. In chapter 6 we specified project
planning and management in which project mile stones are
specified. In chapter 7 we discuss system analysis and design
in which the algorithms of the implementation are discussed.
In chapter 8 the operating system calls and system
commands used in project implementation are described. In
chapter 9 results achieved are specified. The chapter also
describes the testing plan and the test cases of the project
development. Chapter 10 describes the concluding remarks
of the project along with future developments are specified.
Finally, we conclude with references at the end of the project
report.

2. RELATED WORK

There have been different approaches used, to solve the file
data security problem. Most of the solutions provided works
in user space. The simple and naive approach used by many
people to secure their file data is to use common utilities like
'crypt' or 'aescrypt'. These utilities take the filename and the
password as inputs and produce the encrypted file. This type
of utility is good for limited use only, as it is very
cumbersome and manual.

Second approach is integrating encryption engine in
application software itself, where each program that is to
manipulate sensitive data has built-in cryptographic
facilities. But the disadvantage here is that all application
should use the same encryption engine and any change in
one will require changes in all.

The third approach is to use commercially available disk
controllers with embedded encryption hardware that can be
used to encipher entire disks or individual file blocks with a
specified block. It suffers from the fact that key needs to be
shared among users, whose data reside on the disk because
entire disk is protected as a single entity. It is good for single
user system but for multi-user system the key protecting the
data needs to be shared between different users. So we have
seen that each one of the approaches described above; has
its own inherent disadvantages, rendering them less
frequently used.

3. PROPOSED WORK

There have been different approaches used, to solve the file
data security problem. Above approaches are generally
cumbersome and inconvenient to the users. Therefore, there
is a need for a mechanism/system which can ensure reliable
and efficient file data security in a transparent and
convenient manner.

 We focused on this issue and proposed kernel level
encryption that solves the file data security problem. We
considered various places where this mechanism/system
can be placed to fulfill its requirement in the best possible

way. The considered places include user space, device layer
level, and kernel space. We are of the opinion that the file
data security should be provided as a functionality of
operating system, therefore we have decided to push the
encryption services into the Linux kernel space mounted
beneath the virtual file system. There has been a lot of
development taken place since the time when MS DOS device
driver was used to encrypt the entire partition. Nowadays
we have several cryptographic file systems available, which
we have briefly described.

4. ARCHITECTURAL VIEW

The architecture of the proposed system for LINUX can be
show in the figure below.

Fig -1: Proposed Architecture for LINUX

System working flow is given below:

1. A device driver for the character device including in the
functionality of cryptography needs to be registered in to the
kernel.

2. When the device driver is registered in to the kernel, it is
allocated a Major and a Minor number with the help of which
device file needs to be completed.

3. As the users don’t have direct access to the device driver, a
user program is needed so that user can interact with the
device driver.

4.When some data is to be written on to the device, it send to
the device driver by passing the data as parameter to the
system call being invoked from the user program.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 46

5.Then the device driver encrypts the same and writes the
Cipher text on to the device.

6.When the data is to be retrieved from the device, then a
system call is invoked using the user program.

7. Then the system call makes a request to the device driver
to read the data from the device which in turn retrieves the
data from the device, decrypts it and gives the plain text to
the system call so that it can be presented to the user.

In this way the user is not aware of how the cryptographic
transformations take place on the data while writing and
reading the same to and from the device.

5. ALGORITHM RC4

RC4 is a stream cipher having variable key-size stream with
byte oriented operations.

The algorithm is based on the use of random permutations.
The RC4 algorithm is remarkably simple.

A variable length key of from 1 to 256(8 to 2048 bits) is used
to initialize a 256-byte state vector S, with elements
S[0],S[1],S[2],.....,S[255].

At all times, S contains a permutation of all 8-bit numbers
from 0 to 255. For Encryption and decryption, a byte k is
generated from S by selecting one of the 255 entries in a
systematic fashion. As each value of k is generated, the
entries in S are once again permuted.

6. CONCLUSIONS

 The first level implementation results show that data
encryption is a powerful tool through which data security
can be obtained. The results achieved shows that the data is
encrypted before storing data onto the device and decrypted
after retrieving and before displaying data to the user with
the help of key provided by the user. Hence, confidentiality
of data is maintained and the disadvantages of conventional
operating system are overcome.

The project has dealt with designing of character device
driver that encrypts and decrypts data. The project can
further be extended to handle block devices. Also, the
resulting overhead caused because of encryption and
decryption is not considered in the project, it can be
considered for future enhancement.

REFERENCES

[1] Understanding the Linux kernel, Daniel P. Bovet, Marco

Cesati, October 2000.

[2] Kernel Level Implementation of an Encrypting File
System, Brian. K.Dewey, May 1996.

[3] Operating System Principles, Peter Baer Galvin,
Abharam Silberschatz, Greg Gagne, March 2008.

[4] Linux Kernel Development, Robert Love, January 2005.

[5] Beginning Linux Programming, Neil Matthew, Richard
Stones, March 2004.

BIOGRAPHIES

 Prof. T. R. Shinde B.E.(Computer Engg.)

From PCCOE,Pune in 2011. She is
currently working as Asst. Prof. in
Information Technology Dept, PCP, Pune.
She has published research paper in
International Journals and conferences.
Her Interest areas include Data Mining,
Microprocessor and Computer Security.

 Prof. M. U. Sanap M.E.(Computer Engg.)
From SKNCOE, Pune in 2016. He is
currently working as Asst. Prof. in
Information Technology Dept, PCP, Pune.
He has published various research
papers in International Journals and
conferences. His Interest areas include
Data Mining, Big Data Analytics and
Computer Security.

Prof. N.M. Karolia MBA (IT) From
SBPIM, Pune in 2017. She is currently
working as Asst. Prof. in Information
Technology Dept, PCP, Pune. She has
done research in Agile Software
Development. Her Interest areas include
OOP and Computer Security.

