
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 434

An Overview of Web Sockets: The future of Real-Time Communication

Bhumij Gupta1, Dr. M.P. Vani2

1Student, Dept. of Information Technology, Vellore Institute of Technology, Tamil Nadu, India
2Associate Professor, Dept. of Information Technology, Vellore Institute of Technology, Tamil Nadu, India

---***--
Abstract - As the development and implementation of HTML 5
(Hypertext Markup Language 5), it has opened a new range of
possibilities for real-time communication between client and
server. Currently, vastly used methods for asynchronous real-
time communication are HTTP Polling and HTTP Long Polling.
But a new protocol is recently introduced called Web
sockets(WS) and Web sockets secure(WSS). Web Sockets allow
full-duplex communication in HTML5 compliant browser over
a single socket. This paper will cover the basic overview of
Web sockets, and see if it is a better option than its
competitors.

Key Words: Web sockets, Real-time communication,
HTML5, Duplex communication, HTTP

1. INTRODUCTION

Since a long time the web has contained pages which are
static, the facts and the figures are updated once in a while,
and the information gets stale and outdated. These pages do
not reflect the changes of data in real-time until reloaded. If a
user wants the frequent update of data or real-time update
of data, they may have to reload the page every second to
reflect the changes. In this era, there are certain sectors
where real-time communication is very important (real –
time stock market prices, real – time transmission of
patients’ vitals). The progression of real-time data transfer
has also allowed us to implement services like Video
Conferencing and Voice over Internet Protocol (VoIP).

Fig-1 Cryptocurrency exchange website which requires
web socket for real-time exchange rate update

Over HTTP connection, when a client requires a data, it
opens a port, requests for the data, the server sends data on
the same port, and then the port on the client side is closed.
HTTP is connection-less, which means when a client sends a
request to the server it is connected to the server but after
the request is sent, no connection exists. And even more, a

server cannot listen to another client until it processes the
request of the connected client [2]. HTTP is also stateless,
because every request which is made to receive or send data
is independent and no data is used from the previous
request by the HTTP to make a new request. But in order for
the server to respond to the request, it needs some data
about the client and the data required, which is sent in the
form of HTTP headers of request [2].

2. ACHIEVING REAL-TIME COMMUNICATION

Polling: The earliest and the easiest way to implement
real-time communication. The client sends a request to the
server. When a server receives this request, it responds with
a new message, if there is one, or with an empty response if
no new message is available. Again after a short time, the
client resends the request to the server again to see if any
new messages are available [1]. This short time Δ is called the
polling interval.

A shortcoming to this way is if there are no new messages
for the client, there are still requests from the client which
contains the headers. This increases the load on the server
and also consumes bandwidth of the network.

Long Polling: Long Polling came up as a solution to the
unnecessary request sent by the client when there is no new
data on the server. With long polling, the server doesn’t send
an empty response when there are no new messages
available for a client. Instead, the server holds the request
until a new message is available or a timeout expires. This
reduces the number of client requests when no new
messages are available [1].

A shortcoming to this way is, to keep a connection alive
the connection has to be saved locally on the server which
requires extra computation and space.

 Web Sockets: Sockets come up with the solution to both
the problems. With web sockets, we can reduce the metadata
(HTTP headers) that are sent in every request (a shortcoming
of Polling) and we can also provide full–duplex
communication through a single socket (a shortcoming of
Long Polling).

3. WEBSOCKETS

Web sockets act like proxies over HTTP, meaning it tunnels a
TCP connection over HTTP. It is considered the most ideal
option when compared to HTTP Polling and HTTP Long
Polling. Web sockets have their own set of protocols, ws://
(web socket) and wss:// (web socket secure). These
protocols were standardized by IETF in 2011.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 435

Currently, there are many websites which deploy web
sockets to gain real-time communication. But across the
internet we never see a website address with wss:// or
ws:// but majorly http:// and https://. This is due to the fact
that web sockets are deployed as a proxy over http, so it
basically uses the same ports as used by http i.e. port
80(HTTP) and port 443(HTTPS). The data transfer through
websockets can be analyzed using the network analyzer in a
web browser.

A request to upgrade to Websockets is sent and applied
during the initial handshake between the client and server.
The HTTPS headers contain all the information required by
the server to process the request. Once the request is
processed, websockets protocol is mapped over the
HTTP/HTTPS protocol.

Fig-2 Standard HTTPS header for upgrading to
Websockets

Once the websockets is implemented the HTTP header
reduces to a size of an additional 2 bytes as compared to
normal polling headers which have headers of size minimum
of 871 bytes [3]. This massively reduces the server load and
also reduces the bandwidth clogging.

At the time of writing, web sockets are supported by almost
every mainstream browser.

Fig-3 Compatibility of web sockets in browsers [4]

According to a study, Websocket network consumes 50%
less network bandwidth than an AJAX server. Websockets
can send up to 215.44% more data samples when consuming
the same amount of network bandwidth as AJAX. [5]

Websocket is also compatible with IoT devices. It can work
on MicroPy and Arduino. Also, there are many websockets
library made for the clients and servers due to its huge
popularity.

4. ANALYSING NETWORK FOR WEBSOCKETS

We will be analyzing network of a cryptocurrency price
tracking website https://coins.live which uses websockets
for real time price updating. For analyzing the network, we
will be using Google Chrome’ build 69.0.3497.100

Step 1: Open Google Chrome, and press ctrl+shift+I to open
developer tools
Step 2: Switch to network tab to capture data
Step 3: Navigate to https://coins.live and you will see traffic
being captured in real time.
Step 4: Click on any packet to analyze it.

4.1 ANALYSING HEADERS OF FIRST PACKET
CAPTURED

Fig-4 Request Headers of HTTP request packet

Fig-5 Response Header of HTTP response packet

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 436

In the captured headers we can see it contains all the
information about the client and network that the server
needs to provide the data like scheme, user-agent, accept-
encoding, accept-language and in response server sends the
data specifying the content-type, timestamp, status of
request, server type, etc.

Step 5: To filter out websocket packets and frames, switch to
‘ws’ tab from ‘all’ tab.

We can now see the captures websocket handshake packet.

4.2 ANALYZING HEADER OF WEBSOCKET HANDSHAKE
PACKET:

Any network that wants to use websocket protocol starts
with a handshake. The handshake is a GET request from
client to server for upgrading to websocket protocol and the
servers’ response.

Fig-6 Header of websocket upgrade request packet

In the request header,
Connection: Upgrade
Upgrade: websocket

specifies the request to upgrade to websocket protocol
The client side also sends a key along with upgrade request.
Here,

Sec-WebSocket-Key: Olcmuj47cQjClwMLyQXexg==
The server processes this request and sends back the
confirmation for the request.

Fig-7 Header of websocket upgrade response packet

The server responds with conformation

101 Switching Protocols
Connection: upgrade
Upgrade: websocket
WebSocket-Server: uWebSockets

i.e. status code 101 for switching protocol and specifying the
upgraded protocol

The key sent by the client in the request header is appended
to a special globally unique identifier string (GUID) string by
server. Then it generates a SHA Hash from the string and
sends back to server as
Sec-WebSocket-Accept:

VjQnlhajxmNLIEjoAs5Mhd/kZJ4=
The websocket upgrade request contains all the details
about the client needed by server to keep the connection
alive and send any further data.

Step-6: To analyze the data frames exchanged through
websockets, switch to frames tab to capture real time
websocket frames. Click on any frame to see its data.

Fig-8 Data frames sent over WebSockets.

Once the handshake has taken place, communication over
websockets can start. Since all the data required for sending
data to client and keeping the connection alive is exchanged
in the handshake, data frames header is reduced to mere

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 437

bytes containing opcodes to identify the data contained in
the dataframe.

If a connection is to be closed a data frame is sent with close
opcode 0x08. After receiving the frame, the client waits for
server to shut down its side of connection and then the client
shuts the connection.

5. SHORTCOMINGS

Apart from all these advantages, websockets isn’t perfect.
It is still not compatible with mobile web browsers.

Web sockets are still susceptible to DOS attacks as malicious
software can create a large number of web socket connection
to the server.

It is also not compatible with various API calls It is also not
compatible with REST API.

We often need special configuration for load balancing
Websockets introduce a new vulnerability called Cross-Site
Websockets Scripting (CRWS).

6. CONCLUSIONS

In a nutshell, Websockets is a revolutionary technology. It is
currently the best choice for implementing real-time full-
duplex web applications. It reduces the latency and HTTP
header load when comparing to alternate technology, and
due to its compatibility with other existing services its
implementation will keep rising.

It cannot be considered as a replacement to the existing
HTTP model but more of as an upgrade to the model.

REFERENCES

[1] Victoria Pimentel, Bradford G. Nickerson:

Communicating and displaying real-time data with
WebSocket

[2] Akshit Grover: Real-time communication with sockets

[3] Eliot Estep: Mobile HTML5: Efficiency and Performance
of WebSockets and Server-Sent Events

[4] www.caniuse.com

[5] Darshan G. Puranik, Dennis C. Feiock, James H. Hill: Real-
time Monitoring using AJAX and WebSockets

http://www.caniuse.com/

