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Abstract – In this paper, conjugated gradient method 
(CGM) based inverse algorithm for transient heat conduction 
problem in a functionally graded material is performed to 
estimate the unknown boundary shape when measurement or 
observing the body shape is impossible or needs complex, 
accurate and expensive equipment. For example, when the 
unknown boundary placed in high temperature or 
unreachable environment. The governing equations are 
derived by using finite element method as a systematic and 
efficient theory. It is assumed that the material properties are 
smoothly changed based on mixture law. To determine the 
accuracy of the estimated data, problems with different 
boundary conditions, materials and boundary shapes was 
studied and all of them proved that the methods which was 
used in this paper, are completely compatible with the exact 
solution. Finally, the effect of parameters, such as the number 
of thermocouples, the measurement error, and volume fraction 
index and substituting the materials which was used in FGM 
stuff, was discussed and compared.  
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1. INTRODUCTION 
 

Functionally graded materials (FGMs) are a new generation 
of composites which have found extensive applications in 
different industries because of their favorable and 
continuously varying physical and thermal properties [1–4]. 
Hence, these layered components are likely to play a great 
role in the construction of advanced structures, such as 
supersonic and hypersonic space vehicles and nuclear 
industries. Usually, these structural elements operate in a 
high temperature environment which inevitably induces 
some thermal stresses that can change their mechanical 
behavior [5–7] or cause a catastrophic failure of materials. 
Hence, an accurate and efficient determination of their 
thermal characteristic (boundary heat fluxes and 
temperature distributions) is of great interest for 
engineering design and manufacture. On the other hand, in 
some heat transfer problems the operational process for 
direct measurement of the physical parameters is either 
quite complicated or the measurement process 
corresponding to it requires sophisticated and expensive 
instruments. In such situations, satisfactory estimation 
results can be obtained using an inverse method in 
conjunction with simple instruments without disturbing the 
processes. For this purpose, transient temperature 

measurements taken at various boundary points of the body 
can be used for the estimation of the required quantities, and 
for this particular project the boundary shape. However, 
difficulties associated with the implementation of inverse 
analysis should also be recognized. 

It is well-known that inverse problems are mathematically 
ill-posed; that is, a small change in the input data can result 
in enormous change in the computed solution at an 
inaccessible part of the boundary [8]. Hence, the inverse 
methods require efficient optimization tools for their 
solutions. The use of the adjoin equation approach coupled 
with the conjugate gradient method [9–14] appears to be 
very powerful for solving inverse heat conduction problems. 
In this method, the regularization procedure is performed 
during the iterative processes and thus, determination of 
optimal regularization conditions is not necessary. 

The inverse heat conduction problem (IHCP) has been 
widely used in different practical engineering problems such 
as estimation of surface conditions, initial conditions, 
thermal properties and the boundary shape of a body, from 
known information at some predefined positions. For 
example, direct measurement or observing the boundary 
shape at the surface of a wall in general [15-18] and 
specifically subjected to fire, the outer surface of a vehicle re-
entry or the inside surface of a combustion chamber is 
extremely difficult or needs expensive instruments [19]. 
Over the past decades, studies shows that numerical 
simulations [20-22] and experimental tests [23-25] have 
been consistence in different majors including heat transfer 
[26-30], energy [31], material [32-36], and other methods 
[37-40].  

In the previous work by Huang and Chao a transient inverse 
geometry problem in identifying the unknown irregular 
boundary configurations from external measurements 
(either direct or infrared type) has been solved based on the 
boundary element method, i.e. In that work the boundary 
shape was a function of time. That approach could be applied 
to nondestructive evaluation (NDE) techniques and other 
such as the interface geometry identification for the phase 
change problems [41]. Kazemzade and Daneshmand also 
developed a shape identification scheme to determine the 
shape of the inaccessible parts of a 2-dimentional object 
made of functionally graded material using the measured 
temperatures on its accessible parts. They used the 
smoothed fixed grid finite element method which was a new 
approach based on the non-boundary-fitted meshes and the 
gradient smoothing technique were used for the solution of 
direct problem and shape sensitivity analysis. [42] 
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To the best of the authors’ knowledge, there are few works 
on the inverse heat conduction analysis of FGMs [1, 2, 43–
48]. This motivates us to consider the inverse transient heat 
conduction problems of 2 dimensional body shape made of 
FG material here. However, it should be mentioned that 
there are some valuable works on the inverse heat 
conduction analysis of isotropic materials; see, for example, 
references [49–55]. 

2.  Mathematical modeling 

 
The domain under consideration is a functionally graded 
plate that two side of the plate is isolated and the other two 
side is held in constant temperature which is represented in 
figure 1 (a) and also in figure 1 (b) placement of the ceramic 
and metal is shown. The unknown boundary shape is 
estimated by determining the temperature on the opposite 
side of the plate. Hence, we should first solve the direct 
problem. 

 

 

 

 

 

 

 

 

 

Fig. 1 (a): Geometry and the boundary condition, 
discussed in this paper. 

 
 
 
 
 

 
 

 

 

Fig. 1 (b): Placement of pure metal and ceramic on the 
boundary. 

 

2.1 The direct problem 
 
At the first step, we assume the unknown boundary shape as 
known. Then the temperature on the opposite side is 
determined due to it. For this purpose and to accurately do it, 
transient heat transfer equation without heat generation two-
dimensional equation in FG materials is hired and the 
following equation is written as: 
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where   tyxTT ,, ,   y  ,   yCC   and   ykk   

are respectively, temperature, mass density, specific heat 
capacity and thermal conductivity of an arbitrary material 
point of the plate. 

The boundary and initial conditions are as follows, 
respectively, 
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The effective material properties of FG plate constituents 

(metal and ceramic) such as density   , specific heat 

capacity  C  and thermal conductivity  k  are obtained by 

using the power law distribution, without loss of generality 
of the formulation and the method of solution. Hence, a 
typical effective material property ‘G’ is obtained as  

     ncVcGn
mVmGyG   

(7) 

Where the subscripts c and m refer to the ceramic and metal 

constituents, respectively; also, 

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yl

y
cV is the volume 

fraction and n denotes the volume fraction index, which is a 
real positive number.  

In this paper, finite element method (FEM) is applied to 
discretize the spatial differential equation as a systematic and 
efficient method. After finding the weak form for the equation 
number (1), applying by part integration and also using 
Green’ theorem, the above equation is obtained: 
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On the other side, in each element of the finite element 
meshes, we assume that: 
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Shape function is shown as 
e
iN , and also n is the number of 

nodes of the e-th element and 
i
eT  is temperature of the i-th 

node from the e-th element. Finally the governing equation 
will be: 
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(10) 

After assembling the element matrices and satisfying the 
boundary and initial condition, equation (10) changes to: 

       QTMTK    (11) 

Where [K], [M] and {Q} are respectively hardness and mass 
matrix and force vector.  

And also for time derivatives, backward finite difference 
method is used as an unconditionally stable method. After 
applying the method and rearranging the equation, the above 
equation is obtained: 

            ss TMtQKtMT 
 11

 (12) 

where 
s

T is temperature in the s-th time step. Assuming the 

initial conditions and solving the above equation, quantity of 
the temperature for the next time step is obtained. 

2.2. Creating elements and geometry of solvent 
procedure 
 
Since the purpose of this paper is to estimate the boundary 
shape, the boundary shape changes in every time step. As a 
matter of fact, in every step the whole meshes should be 
terminated and rebuilt in the next time step [56-59]. Actually 
we’re facing a moving mesh. On the other side, since the 
unknown boundary is curved shape, so the elements are 
irregular. For creating the matrices of hardness and mass and 
also the force vector, the irregular physical domain should be 
mapping to computational regular domain. As an efficient 
method for mapping the domain, the Gauss method is used. 
At this point, x and y direction changes to   and   

 







































yx

yx

g  

 

























































i

i

i

i

N

N

G

y

N
x

N

 

 

 

 

 

(13) 

    1
 gG  

  ddgdxdy det  

If Ni considers as shape function, the following equation is 
achieved: 
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2.3 The inverse problem 
 
In the inverse problem, the boundary shape is assumed to be 
unknown, while all the other effective parameters for solvent 
are known. Moreover, the temperature at some suitable 
locations on the other side of the plate in an arbitrary time t 
are considered to be available.  

2.4 Sensitivity problem 
 
The governing differential equations of the sensitivity 
problems are obtained from the original direct problem 
defined by Equations (1)-(6). For this purpose, perturbing 

 txf , to    txftxf ,,  , then  txT ,  change to 

   txTtxT ,,  , respectively. Substituting these new values 

of the field variables in Equation (1) and neglecting the 
higher order terms, the governing differential equations of 
the sensitivity problems are obtained as       
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In a similar manner, the boundary conditions (2)-(6) become, 
respectively, 
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2.5 Adjoin problem and gradient equation 
 
In order to derive the governing differential equations of 
adjoin problem, Lagrange multipliers approach is adopted. 
Using this approach, the new functional is defined   
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In the adjoin problem, the values of the field variables are 
specified at the final time jtt  instead of the initial time t=0, 

as in the traditional initial value problems. However, by 

defining a new time variable as )( tjt  , this problem is easily 

transformed to a standard initial value problem. Then, with 

perturbing  txf ,  to    txftxf ,,   and respectively 

 txT ,  to    txTtxT ,  and also by-parting the 

integration, the above equation is achieved: 
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And the boundary conditions become: 
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And the gradient of the above functional can be presented as: 
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2.6 conjugated gradient method for minimization 
 
In this paper, for finding the temperature on the surface, the 
number of M thermocouple is placed on it. The 

thermocouples sense the temperature as  tmY  which means 

the temperature for mx  in the time of t.     tmxYtmY ,  

the process of solving the inverse problem continues till the 
above functional minimizes: 
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In which  tmT  is known as the estimated temperature for 

mx  in the time of t. Based on the Conjugated gradient 

method, the unknown quantity  txf ,  is estimated using an 

iterative process as follows,  
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Where r  is the search step size in going from the iteration r 

to the iteration r+1 and  tr
P  is the direction of descent (i.e. 

search direction) given by, 
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It can be seen that the method degenerate to the steepest 

descent method when 0
r

  for any r in Eq. (31). The 

convergence of the above iterative procedure in minimizing 

the functional Ĵ is demonstrated previously [9]. 

After substituting the equation (30) in (29), the functional of 

 1ˆ r
fJ  for iteration r+1 is written as bellow: 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 12 | Dec 2018                    www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 172 
 

       




 
t

dttYpfTfJ
f

t

M

m

m

rrr

m

r

0
1

2
1 ˆˆ   

(33) 

After writing the derivation of the above equation toward 
r

 and also making it equivalent to zero, we reach to bellow 

equation as search step size: 
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2.7 Stopping criterion 

 
The stopping criterion to terminate the iteration processes 
depends on the measurement errors. If the temperature at 
the surface can be measured accurately (i.e. without any 
measurement error) then as the value of the objective 
functional converge to a very small number, the 
computational procedure is stopped, i.e. 

    tfJ r 1

 
(35) 

where   is a small specified number. But, since the measured 

temperature data contains some measurement errors, in this 
study the discrepancy principle is adopted as the stopping 
criterion to terminate the iteration procedure. Based on this 
criterion, the temperature residuals is approximated as, 

   tYtT mm   (36) 

Where σ is the standard deviation of the temperature 
measurements, which is assumed to be constant. Substituting 

Eq. (36) into Eq. (29), then the stopping criteria  which 
should be used in inequality (35) is obtained as,  

jtM 2 
 

(37) 

2.8 Computational procedure 

 The computational procedure for the solution of this inverse 
problem using conjugate gradient method may be 
summarized as follows: 

i. Set  txf , as known for the first iteration 

ii. Solve the direct problem given by equation (1)-(6) 

for  tyxT ,,  

iii. Examine the stopping criterion given by equation 
(35) with ε given by equation (37). Continue if not 
satisfied 

iv. Solve the adjoin problem given by equation (22)-

(27) for  tyx ,,  

v. Compute the gradient of the functional 
r

J ˆ from 

equation(28) 

vi. Compute the conjugate coefficient 
r

 and direction 

of descent 
r

P from equation (32) and (31), 
respectively. 

vii. Set 
r

pf  , and solve the sensitivity problem 

given by equation (15)-(20) for  txT ,  

viii. Compute the search step size 
r

  from equation 

(34). 

ix. Compute the new estimation for  tx
r

f ,
1  from 

equation (30) and return to step II. 

3. Numerical results and discussion              
                                                                                        

In this section, the accuracy of the proposed inverse 
algorithm in predicting the boundary shape on the 
functionally graded plate is investigated. For this purpose, 8 
distinct example of FG plate with unknown boundary shapes 
are investigated. Also in this section the effect of parameters, 
such as the number of thermocouples, the measurement 
error, and volume fraction index and substituting the 
materials which was used in FGM stuff are discussed and 
compared with the exact solution. The number of 
thermocouples in the y-direction are the same as number of 

the nodes. The total time is assumed to be  s
f

t 40  and 

the value of  st 1  is used in all the solved examples. The 

material properties of the FG fins for different examples are 
presented in Table 1. Initial guess for the unknown boundary 

for all the examples is 0
0
f . 

Table 1 Thermo-physical properties of the materials. 

Material C(J/kgK) k (W/mK)  (kg/m3) 
Iron 448 80 7850 

Al2O3 775 30.7 3970 
Aluminum 900 247 2712 

Al2O3 775 30.7 3970 
 
To compare the results for situations involving random 
measurement errors, the normally distributed uncorrelated 
errors with zero mean and constant standard deviation, , 

are used.  The simulated vector of inexact measurement data 
Y can be expressed as 

      exactYY
 

(38) 

 where Y represents the exact values of the temperature of 

the direct problem at different times and   is the vector of 

random errors with zero mean and a specified standard 
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deviation. In all the solved examples, a value of 01.0 is 

used for the case of .0  

In the solved examples, the average error is evaluated 
based on the following formulation, 

   
 

   %1001

1 1 ,

,ˆ,
%












JM

M

i

J

j jtixf

jtixfjtixf
Error

 

 

 

(39) 

 

 

In which  jtixf ,  is the estimated equation for the 

unknown boundary shape and  jtixf ,ˆ  is the exact 

equation. And also M is the number of thermocouples in x-
direction and J+1 is the number of time nodes.  

For making sure that the method and the solvent process is 
correct, we compare the results with the Sakurai’s results. 
[30] For this purpose, table 2 is shown. 

Table 2. Comparison between results of Sukurai and this 
paper. 

x Present study Sakurai (30) 

0.1 7.865 7.863 

0.2 6.231 6.226 

0.3 4.911 4.901 

0.4 3.658 3.652 

0.5 2.695 2.691 

0.6 1.934 1.928 

0.7 1.247 1.238 

0.8 0.836 0.831 

0.9 0.421 0.416 

 
The material which was used for the examples are Alumina as 
ceramic and Iron as metal, except example 64.  

In the first and second example the equation of unknown 
boundary shapes are respectively, xy  2  and 

 xy sin5.1  . Also 20M  and 2n . The estimated 

boundary shape for 3,1,5.0,0  is shown and compared 

with the exact shape in figure 2 and 3. The computational 
time efforts and the percentage of average errors (evaluated 
using Eq. (39)) for the above solved examples are given in 
Table 3. 

 

 

Table 3. The computational time efforts and percentage of 
errors for the first two examples. 

 

(a) σ = 0 (b) σ = 0.5 

(c) σ = 1 (d) σ = 3 

Fig. 2 (a)-(d): Comparison between the estimated and 
exact shape of boundary with equation xy  2  for 

different standard deviation (example 1). 

σ  
Example 

(1) 
Example 

(2) 

0.0 

Number of 
iteration 

14 22 

Error % 0.61 1.42 

0.5 

Number of 
iteration 

8 14 

Error % 3.56 4.77 

1 

Number of 
iteration 

11 8 

Error % 4.71 6.30 

3 

Number of 
iteration 

6 11 

Error % 6.58 9.06 
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(b) σ =0.5 (a) σ = 0 

(d) σ = 3 (c) σ = 1 

Fig. 3 (a)-(d): Comparison between the estimated and 

exact shape of boundary with equation  xy sin5.1   

for different standard deviation (Ex. 2). 
 

(b) M=10 (a) M=5 

(d) M=25 (c) M=20 

Fig. 4 (a)-(d): Comparison between the estimated and 
exact shape of boundary for different number of 

thermocouples with equation  xy sin5.1   (Ex. 3). 

 
In the third example, the effect of number of thermocouples is 
shown in figure 4 and discussed. The equation of unknown 

boundary shape is  xy sin5.1   and also 2.0  and 

2n . The purpose of this example is finding the 

thermocouple number, which has the minimum deviation 
with the exact answer. 

In the fourth example, the effect of substituting the materials 
which was used in FGM stuff is discussed and compared in 
figure 5. The equation of unknown boundary shape 
is xy 25.1   and also 2.0  and 2n . The purpose of 

this example is comparing the results when the place of the 
pure ceramic and metal is substituted. 

(b) 
(a) 

Fig. 5 (a)-(b): Comparison between the estimated and 
exact shape of boundary with equation xy 25.1   when 

a) metal is on y=0 (down) b) ceramic is on y=0 (down) 
(example 4). 

 
In the fifth example, the effect of variable value for volume 
fraction index is presented in figure 6. The equation of 

unknown boundary shape is  xy 2sin5.1   and also 

2.0  and 10M . 

(b) n=0.5 
(a) n=0 

(d) n=1.5 (c) n=1 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 12 | Dec 2018                    www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 175 
 

(f) n=4 (e) n=3 

Fig. 6 (a)-(f): Comparison between the estimated and 

exact shape of boundary with equation  xy 2sin5.1   

for various volume fraction indexes (example 5). 
 

In the sixth example, different FG materials are used to 
compare the results. The equation of unknown boundary 

shape is  xy 2sin5.1   and also 2.0  and 10M . In 

the both figure 7 (a) and 7(b) Alumina is used as ceramic. 
Iron is used for the first part and Aluminum for the second 
part is hired as metal. 

(a) (b) 

Fig. 7 (a)-(b): Comparison between the estimated and 

exact shape of boundary with equation  xy 2sin5.1   

when the FG plate consists of a) Iron and Alumina b) 
Aluminum and Alumina (example 6). 

 
In the seventh and 8th example new boundary condition is 
performed, as figure 8 and also in the new boundary 

condition: 1001  TT , 3002  TT , 1003  TT .The 

equation of unknown boundary shapes are respectively, 

xy  2  and  xy sin5.1  . Also 20M  and 2n . The 

estimated boundary shape for 0  is shown and compared 

with the exact figure in figure 9 and 10. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Geometry and the boundary condition for example 7 
and 8. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Comparison between the estimated and exact shape 
of boundary with equation xy  2  when 0  for new 

boundary condition (example 7). 

  

 

 

 

 
Fig. 10: Comparison between the estimated and exact 

shape of boundary with equation  xy sin5.1   when 

0  for new boundary condition (example 8). 

 

4. Conclusion 
 

Inverse transient heat conduction problems of 
functionally graded (FG) plate is presented. The equation of 
boundary shape is estimated by using the measured 
temperature at the other side’s plate. To accurately model the 
heat conduction phenomena, the non-Fourier heat transfer 
equation is used. The conjugate gradient method (CGM) is 
employed for the optimization procedure and the finite 
element method is applied to solve the governing differential 
equations. From the solved examples, it is revealed that the 
presented approach has the ability to predict the unknown 
boundary shape with good accuracy and low computational 
time efforts.  
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