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Abstract:- In this review paper we have presented a brief 
survey about the most recently achievements in the RNS, for 
improving the system performance. We concern the  different 
proposed moduli sets that provide different dynamic ranges, 
the common means and structures to perform forward and 
reverse conversion, universal structures of residue arithmetic 
units and application where using the RNS is beneficial. 
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I. INTRODUCTION 

All in all, numbers might be marked, and for parallel 
computerized math there are three standard 
documentations that have been generally utilized for the 
paired portrayal of marked numbers. These are sign-and-
size, one's supplement, and two's supplement. Of these three, 
the latter is the most famous, in light of the relative 
simplicity and speed with which the essential number 
juggling activities can be executed. Sign-and-size 
documentation has the comfort of having a sign-portrayal 
that is like that utilized in common decimal number juggling. 
Furthermore, one's supplement, despite the fact that a 
documentation in its own particular right, more regularly 
seems just as a middle of the road venture in number 
juggling including the other two documentations of two 
representations for zero can be a nuisance in an 
implementation.  Addition and subtraction are harder to 
implement in this notation than in one’s complement and 
two’s complement notations; and as these are the most 
common arithmetic operations, true sign-and-magnitude 
arithmetic is very rarely implemented. 

The main RNS advantage is the absence of carry propagation 
between digits, which results in high-speed arithmetic 
needed in embedded processors. Another important feature 
of RNS is the digits independence, so an error in a digit does 
not propagate to other digits, which results in no error 
propagation, hence providing fault-tolerance systems. In 
addition, the RNS can be very efficient in complex-number 
arithmetic, because it simplifies and reduces the number of 
multiplications needed. All these features increase the 
scientific tendency toward the RNS especially for DSP 
applications. However, the RNS is still not popular in 
general-purpose processors, due the aforementioned 
difficulties. 

Fig. 1.1: The architecture of the residue number system 
(RNS) 

The basic RNS processor’s architecture is shown in Fig. 1.1. It 
consists of three main components; a forward converter 
(binary to residue converter), that converts the binary 
number to n equivalent RNS residues, corresponding to the n 
moduli. The n residues are then processed using n parallel 
residue arithmetic units (RAUs); each of them corresponds 
to one Residue Number System Based Building Blocks for 
Applications in Digital Signal Processing modulo. The n 
outputs of these units represented in RNS are then converted 
back into their binary equivalent, by utilizing the reverse 
converter (residue to binary converter). 

In one’s complement notation, the  representation of the  
negation  of a number  is obtained by inverting  the  bits  in 
its binary  representation; that is, the 0s are changed  to 1s 
and the 1s are changed  to 0s. For example, the 
representation of the number positive-five in six bits is 
000101 and negative- five therefore has the representation 
111010. The leading bit again indicates the sign of the 
number, being 0 for a positive number and 1 for a negative 
number.   Therefore  refer to the  most  significant  digit  as 
the  sign bit,  although here  the  sign  of a  negative  number   
is in  fact  represented by  an  infinite  string  of 1s that in 
practice  is truncated according  to  the number of bits used 
in the representations and the magnitude of the number 
represented.  It is straightforward to show that the n-bit 
representation of the negation of a number N is also, when 
interpreted as the representation of an unsigned number, 
that of 2n − 1 − N.  (This point will be useful in subsequent 
discussions of basic residue arithmetic.) The one’s 
complement system to has two representations for zero—
00. . . 0 and 11. . . 1—which can be a nuisance in 
implementations. A similar problem occurs with certain 
residue number systems.   Addition  and  subtraction in this  
notation are harder  to implement than  in two’s complement 
notation (but  easier  than  in sign-and-magnitude notation) 
and  multiplication and division are only slightly  less so.  For 
this reason, two’s complement is the preferred notation for 
implementing most computer arithmetic. 

Negation in two’s complement notation consists of a bit-
inversion (that is, a translation into the one’s complement) 
followed by the addition of a 1, with any carry from the 
addition being ignored.  Thus, for example, the result of 
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negating 000101 is 111011. As with one’s complement 
notation, the leftmost bit here too indicates the sign: it is 0 
for a positive number and 1 for a negative number; but 
again, strictly, the sign is actually represented by the 
truncation of an infinite string.  For n-bit representations, 
representing the negation of the number N may also be 
viewed as the representation of the positive number 2n – N.  

In contrast with the first two conventional notations, the 
two’s complement has only one representation for zero, i.e.  
00. . . 0.  The  two’s complement notation is the  most  widely 
used of the  three  systems,  as the  algorithms  and  
hardware designs  required  for its  implementation are  
quite straightforward.  Addition, subtraction, and 
multiplication are relatively easy to implement with this 
notation, and division is only slightly less so. 

All of the notations above can be readily extended to non-
binary radices. The  extension  of binary  sign-and-
magnitude to  an  arbitrary radix,  r,  involves representing 
the  magnitude in radix-r  and  using 0 in the  sign digit for 
positive numbers  and r − 1 for negative  numbers.  An 
alternative representation for the sign is to use half of the 
permissible values of the sign digit (that is, 0 . . . r/2 − 1, 
assuming r is even) for the positive numbers and the other 
half (that is, r/2 . . . r − 1, for an even radix) for the negative 
numbers. 

The generalization of one’s complement to an arbitrary radix 
is known as diminished-radix complement, the name being 
derived from the fact that to negate a number in this 
notation, each digit is subtracted from the radix diminished 
by one, i.e. from r − 1. Alternatively, the representation of the 
negation may also be viewed as the result of subtracting the 
number from rn − 1, where n is the number of digits used in 
the representations. Thus, for example, the negation of 
01432 in radix-8 is 76345, i.e. The determination of sign is 
similar to that for the radix-r diminished-radix complement. 

II. RESIDUE NUMBER SYSTEMS 

Residue number systems are based on the congruence 
relation,   which is defined as follows.  Two integers  a and  b 
are said to be congruent  modulo m  if m  divides exactly  the  
difference of a and  b; it is common,  especially in 
mathematics tests,  to write   a ≡ b (mod  m)  to denote  this.   
Thus, for example, 10 ≡ 7 (mod 3), 10 ≡ 4 (mod  3), 10 ≡ 1 
(mod  3),  and  10 ≡−2 (mod  3).   The  number  m  is a 
modulus  or base , and  assume that its values exclude unity,  
which produces  only trivial  congruence’s. If q and  r are the  
quotient and  remainder, respectively,  of the  integer 
division  of a by  m—that is,  a = q.m + r—then,   by  
definition,  have a ≡ r (mod  m).  The  number  r is said to be 
the  residue  of a with  respect to m,  and  usually  denote  this  
by r = |a|m .  The  set of m smallest values,  {0, 1, 2, . . . , m − 
1},  that the  residue  may  assume  is called the  set of least  
positive  residues  modulo  m .   Unless otherwise specified, 
assume that these are the only residues in use. 

Suppose  have  a set,  {m1 , m2 , . . . , mN },  of N  positive  and  
pair wise relatively  prime moduli5 . Let M  be the product of 
the moduli.  Then every number  X < M  has a unique 
representation in the residue number  system, which is the  
set of residues  {|X |mi    : 1 ≤ i ≤ N }.  The  number  M  is called 
the dynamic  range  of the  RNS,  because  the  number  of 
numbers  that can  be represented is M . For unsigned 
numbers, that range is [0, M − 1]. 

RNS to MRS Conversion 

From MRS Definition have 

 

Easy to See that z0 = y0, Subtracting This Value from RNS and 
MRS Values Results in: 

 

 

Next, Divide Both Representations by m0: 

 

Thus, if Can Divide by m0, Have an 
Iterative Approach for Conversion. Dividing y' (a Multiple of 
m0) by m0 is SCALING Easier than Normal RNS Division 
Accomplished by Multiplying by Muliplicative 
Inverse of m0. 

III. LITERATURE RVIEW 

Xu, M. and Bian, Z. [1] investigated a fast sign detection 
algorithm for the residue number system moduli 
set ${2^{n+1}-1, 2^{n}-1, 2^{n}}$ . First, a sign detection 
algorithm for the restricted moduli set is described. The new 
algorithm allows for parallel implementation and consists 
exclusively of modulo $2^{n}$ additions. Then, a sign 
detection unit for the moduli set ${2^{n+1}-1, 2^{n}-1, 
2^{n}}$ is proposed based on the new sign detection 
algorithm. The unit can be implemented using one carry save 
adder, one comparator and one prefix adder. The 
experimental results demonstrate that the proposed circuit 
unit offers 63.8%, 44.9%, and 67.6% savings on average in 
area, delay and power, respectively, compared with a unit 
based on one of the best sign detection algorithms. 

Maji, P. and Rath, G.S. [2] presented a RNS is generally an 
integer number system. The foremost canonical reason for 
implementation of filter in residue arithmetic is the inherent 
property of carry-free addition, subtraction and 
multiplication. As a result add, subtract and multiply in 
unison regardless to the numbers. Hereby, devices operating 
in this principle are fast and ingest low power. However, 
principal limitation of Residue Number System is the slow 
and complex nature for arithmetic operations viz. division, 
comparison, sign detection and overflow detection and 
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rejection. In this paper have described some novel 
approaches to grapple with the limitations of comparison, 
sign detection and averting overflow. The selection of moduli 
in RNS is most important in attaining to solutions of 
problems as described earlier. Accordingly, a set of moduli is 
selected. Further in this paper have used this set of moduli to 
successfully depict a design approach for 32-bit lowpass 
finite impulse response (FIR) filter. 

Daikpor, M.N. and Adegbenro, O. [3] proposed  an overview 
of design implementation of a Symmetrical Multiple Valued 
Logic (SMVL) arithmetic circuit based on the use of 
restricted moduli Symmetrical Signed Residue Number 
System (SSRNS). Restricted radix-7 Symmetrical quaternary 
Signed digit (Rr7SqSd) T-gate based interconnections and 
full adders are used to implement sign detection, overflow 
detection and magnitude comparison without recourse to 
Mixed Radix number System (MRS) converters design or 
Chinese Remainder Theorem (CRT) computation. 

Tomczak, T. [4] worked a fast algorithm for sign-extraction 
of a number given in the Residue Number System (2n-
1,2n,2n+1). The algorithm can be implemented using three n-
bit wide additions, two of which can be done in parallel. It 
can be used in a wide variety of problems, i.e., in algorithms 
for dividing numbers in the RNS, or in evaluating the sign of 
determinant in computational geometry, etc. 

Rejeb, B.; Henkelmann, H. and Anheier, W. [5] analyzed the 
division; sign detection and number comparison are the 
more difficult operations in residue number systems (RNS). 
These shortcomings limited most RNS implementations to 
additions, subtractions and multiplications. In this paper, a 
high level description of a RNS division algorithm is 
proposed. A general hardware architecture of the algorithm 
for division by a constant as well as its application to fractal 
image coding are also presented. 

Hiasat, A. A. and Abdel-Aty-Zohdy, H.S. [6] presented a new 
algorithm for one of the longstanding problems in residue 
number system, namely division, is presented. The algorithm 
is very simple. It approaches the paper-and-pencil division 
procedure where the quotient is selected to guarantee a non-
negative remainder. This algorithm does not require sign 
and overflow detection, scaling, or redundant moduli. Based 
on computer simulation results, the algorithm is four times 
faster than the most recent and competitive published work 
by Lu and Chiang (see IEEE Trans. Compu., vol. C-41, no. 8, p. 
1026-32, 1992). 

IV. PROBLEM DESCRIPTION 

Sign detection plays an essential role in branching 
operations, magnitude comparisons, and overflow detection. 
Because the sign information is concealed in each residue 
digit in a residue number system (RNS), sign detection in an 
RNS is more difficult than that in the weighted number 
system, in which the sign is the most significant bit (MSB). 

Furthermore, sign detection in an RNS is not as efficient as 
modular operations, such as addition, subtraction, and 
multiplication, because of its complexity. 

The sign detection problem has been investigated by many 
researchers. A general theorem is derived by establishing the 
necessary conditions for sign detection [1].  

V. PROPOSED METHODOLOGY 

A standard RNS is defined exclusively for positive integers in 
the range [0, M). To accommodate negative integers, an 
implicit signed number system may be considered to be split 
into a positive half of the range and a negative half of the 
range. The dynamic range M of the moduli set {m1, m2,...,m 
N-1, mN= 2nn- 1, 2- 1, 2n} is even. After conversion from the 
residue number to the weighted number, the resulting non 
integer X in the interval [0, M/2) carries an implicit 
representation of the sign of the actual result Y, which can be 
obtained in its range [-M/2, M/2 - 1) as follows 

                 (1) 

The mixed-radix CRT is presented in [8] as follows. 

Given  the magnitude of a residue 

number is calculated as follows: 

 

Where  

 

,  

 

 

 

 

VI. CONCLUSION 

 Residue number systems  are  more  complex  than  the  
other  standard notations reviewed. Thus, the residue 
arithmetic is often realized in terms of lookup-tables (to 
avoid the complex combinational-logic circuits) and 
conventional arithmetic.  The sign-and- magnitude approach 
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may be convenient for representing signed numbers in RNS, 
but actual arithmetic operations might be best realized in 
terms of radix-complement arithmetic. We have analyzed 
certain choices of representational parameters in RNS 
naturally lead to diminished-radix complement (one’s 
complement) arithmetic. The dynamic  range  then  consists  
of a “legitimate” range,  defined by the  non- redundant 
moduli  and  an  “illegitimate” range;  for arithmetic 
operations, initial  operands  and results  should   be within  
legitimate range.  RNS of this type are especially useful in 
fault-tolerant computing.  The redundant moduli mean that 
digit-positions with errors may be excluded from 
computations while still retaining a sufficient part of the 
dynamic range.  Furthermore, both the detection and 
correction of errors are possible:  with k redundant moduli,  
it is possible to detect  up to k errors and  to correct  up to 
bk/2c errors.  A different form of redundancy can be 
introduced by extending the size of the digit-set 
corresponding to a modulus, in a manner similar  to RSDs.   
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