
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1103

Inheritance in Java

Mrs. Kanchanmala D Talekar1, Mr. Mithun Jadhav2

1Lecturer, Dept. of computer Engineering, GVAP Shelu, Maharashtra, India.
2HOD, Dept. of computer Engineering, GVAP Shelu, Maharashtra, India

---***--
1. INTRODUCTION

It is always nice if we could reuse something that already
exists rather than creating the same all over again and again.
Java supports this concept. Java classes can be reused in
several ways. This is basically done by creating new classes,
reusing the properties of existing ones. The mechanism of
deriving a new class from an old one is called Inheritance.

The old class is known as base class or super class or parent
class. The new class is called the derived class or subclass or
child class. Inheritance in java is a mechanism in which one
object acquires all the properties and behaviors of parent
object. The idea behind inheritance is that you can create
new classes that are built upon existing classes. When you
inherit from an existing class, you can reuse methods and
fields of parent class and you can add new methods and
fields also. Inheritance represents the IS-A relationship, also
known as parent-child relationship.

Advantages of Inheritance:

1. For Method Overriding: so runtime
polymorphism can be achieved.

2. For Code Reusability.

Syntax of java Inheritance:

 class Superclass_Name{

 //methods and fields

}

class Subclass_Name extends Superclass_Name

{ //methods and fields

}

The extends keyword indicates that you are making new
class that derives from an existing class.

Types of Inheritance:

There are following types of Inheritance:

1. Single Inheritance
2. Multilevel Inheritance
3. Hierarchical Inheritance
4. Hybrid Inheritance

Super Keyword:

 Super keyword can be used to refer immediate
parent class instance variable.

 Super keyword can be used to invoke immediate
parent class method.

 Super() can be used to invoke immediate parent
class Constructor.

1.1 Single Inheritance:

Single inheritance is damn easy to understand. When a
class extends another one class only then we call it a single
inheritance. The below flow diagram shows that class B
extends only one class which is A. Here A is a parent class of
B and B would be a child class of A.

Fig1. Structure of Single Inheritance

Syntax:

 class A{

 //code

 }

class B extends A {

 //code

 }

Example 1:

class A

class b

Class: Person

Name, age

Class: Employee

emp_designation

emp_salary

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1104

Fig 2. Example of Single Inheritance

class Person{

String name;

int age;

Person(String n,int a){

name=n;

age=a;

}

void display(){

System.out.println("\n Name ="+name);

System.out.println("\n Age="+age);

}

}

class Employee extends Person{

String emp_designation;

float emp_salary;

Employee(String n,int a,String d,float s) {

super(n,a);

emp_designation=d;

emp_salary=s;

}

void display(){

super.display();

System.out.println("\n Employee
designation="+emp_designation);

System.out.println("\n Employee salary="+emp_salary);

}

}

public class SingleInheritance{

 public static void main(String args[]){

Employee e=new
Employee("Anushree",26,"Developer",35000);

e.display();

}

}

Output:

Fig 3: Output of Single Inheritance

1.2 Multilevel Inheritance

Multilevel inheritance refers to a mechanism in OO
technology where one can inherit from a derived class,
thereby making this derived class the base class for the new
class. As you can see in below flow diagram C is subclass or
child class of B and B is a child class of A. For more details
and example refer – Multilevel inheritance in Java.

Fig 4: Structure of Multilevel Inheritance

Syntax:

class A {
 //code
}

class B extends A {

 //code

}

class C extends A {

 //code

}

class Animal

class Dog

class BabyDog

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1105

Example:

Fig 5: Example of Multilevel Inheritance

Example:

class Animal{

void eat(){

System.out.println("\n Eating.....");

}

}

class Dog extends Animal{

void bark(){

System.out.println("\n Barking.....");

}

}

class BabyDog extends Dog{

void weep(){

System.out.println("\n weeping.....");

}

}

class MultipleInheritance{

 public static void main(String args[]){

BabyDog b1=new BabyDog();

b1.weep();

b1.bark();

b1.eat();

}

}

Output:

Fig 6: Output of Multilevel Inheritance

1.3 Hierarchical Inheritance

When more than one classes inherits a same class then this is
called hierarchical inheritance

Fig 7: Structure of Hierarchical Inheritance

Syntax:

class A{
//code
}
class B extends A{
//code
}
class c extends A{
 //code
}

Example:

Fig 8: Example of Hierarchical Inheritance

class Car{
public Car() {
System.out.println("Class Car");
 }
public void vehicleType() {

class Car

class Car class Car

class A

class B class C

class Animal

class Dog

class BabyDog

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1106

System.out.println("Vehicle Type: Car");
}
}
class Maruti extends Car{
public Maruti() {
System.out.println("Class Maruti");
}
public void brand() {
System.out.println("Brand: Maruti");
}
public void speed() {
System.out.println("Max: 90Kmph");
}
}
class Maruti800 extends Maruti{
public Maruti800() {
System.out.println("Maruti Model: 800");
}
public void speed() {
System.out.println("Max: 80Kmph");
}
}
public class Hirarchical_Inheritance{
public static void main(String args[])

 {
 Maruti800 obj=new Maruti800();
 obj.vehicleType();
 obj.brand();
 obj.speed();
 }
}

Fig 9: output of Hierarchical Inheritance

1.4 Multiple Inheritance

“Multiple Inheritance” refers to the concept of one class
extending (Or inherits) more than one base class. The
inheritance we learnt earlier had the concept of one base
class or parent. The problem with “multiple inheritance” is
that the derived class will have to manage the dependency
on two base classes.

Fig 10: Structure of Multiple Inheritance

Note 1: Multiple Inheritances is very rarely used in software
projects. Using multiple inheritance often leads to problems
in the hierarchy. This results in unwanted complexity when
further extending the class.

Note 2: Most of the new OO languages like Small Talk, Java,
and C # do not support Multiple inheritance. Multiple
Inheritances is supported in C++.

1.5 Hybrid Inheritance

In simple terms you can say that Hybrid inheritance is a
combination of Single and Multiple inheritance. A typical
flow diagram would look like below. A hybrid inheritance
can be achieved in the java in a same way as
multiple inheritance can be!! Using interfaces. yes you heard
it right. By using interfaces you can have multiple as well as
hybrid inheritance in Java.

Fig 10: Structure of Multiple Inheritance

REFERENCES

1. https://beginnersbook.com

2. https://www.javatpoint.com

class A class B

class C

class A

class B class C

class D

