
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 833

Technique of Finding the Defect in Software Testing

VIJAY PRATAP KATIYAR

Computer Science Department, Faculty of Engineering and Technology, Rama University, Kanpur,
Uttar Pradesh, India

---***--
ABSTRACT:- Software testing is a process of executing a program or application with the intent of finding the software
bugs. It can also be stated as the process of validating and verifying that a software program or application or product:
Meets the business and technical requirements that guided it's design and development.

Software testing is the most significant stage of the Software Development Life Cycle. Projects underneath testing goes
through different stages such as test analysis, test planning, test case, test case review process, test execution process,
requirement traceability matrix (RTM), defect tracking bug logging and tracking), test execution report and closure.

In terms of software, defects means whenever expected results not meet actual results. Generally defect is known as a bug.
lt talks about the complete life cycle of a bug right from the stage it was found, fixed, re-test, and close.

This paper basically deals with entire process of bug life cycle and how to avoid the bug. To avoid the bug, Test Engineer
should prepare the bug report template which consists of various steps. Complete the bug free task.

Keywords

Test Plan, Bug Life Cycle, Classification of Defect, Black-box Technique.

1. INTRODUCTION

Software testing is completed with different stages such as test analysis, test planning, test case, test case review process,
test execution process, requirement traceability matrix (RTM), defect tracking (bug logging and tracking), test execution
report and closure. Software testing is the major activity of estimating and accomplishing product with an observation to
find out faults. It is the procedure where the system constraints and system modules are implemented and estimated
manually or by using automation tools to figure out whether the system is fulfilling the specific requisites or not. [1]

The term ”bug” refers to software defects, and the term has been a publicly accepted term for software defect since first
referred to as such in Harvard Mark I days [2].

Debuggers are crucial tools needed in the development process, actually during the development of the average software
project at least half of the time is spent debugging. [2][3]. In spite of that, the debuggers most commonly used to debug
software aren’t taught to students to any great extent. Debuggers are in general studied very little, for example compared
to compilers. Most debuggers offer more sophisticated functions such as running a program ”step-by-step”, pause
application execution to examine its current state, and tracking the value changes of variables A debugger is a Complex
piece of software that can be is used to test and “debug” other applications. Their internals require sophisticated
algorithms and data structures to be able to perform their objective. Debuggers are used to analyze and find out why
software doesn’t behave as expected. They help developers to understand the software and to find the cause of a software
glitch. The developer can with the help of the debugger find and repair the glitch to allow the software to work according
to its original intent. The debugger can control the software being debugged so it can allow the developers to follow the
execution flow of the software, and in that way verify that the software executes as expected.

A Test plan is a document describing the scope, approach, objectives, resources, and schedule of a software testing effort.
It identifies the items to be tested [4, 5], items not be tested, who will do the testing, the test approach followed, what will be
the pass/fail criteria. It is also a document we share with the Business Analysts, Project Managers, Development teams.
This is to enhance the level of transparency into the QA team’s [5] working to the external teams. It is documented by the
QA Manager/QA Lead based on the inputs from the QA team members. Test plan is not static and is updated on an on
demand basis.

https://en.wikipedia.org/wiki/Black-box_testing#cite_note-1

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 834

2. BRIEF LITERATURE SURVEY

2.1 Test Plan

Test plan is a dynamic document that derives entire testing activities. It is prepared in the beginning as soon as the
requirement is gathered. Following are the attributes of test plan.

A. Objective: It shows that, what is the aim of writing the test plan. This test plan is written to test the functionality of
product.

B. Scope: It consists of two sub part:

(i) In scope i.e., features which needs to be tested.

(ii) Out of scope i.e., features which need not to be tested.

C. Test Methodology: It defines the types of testing which needs to be performed by test engineer for start particular
release. Testing types are shown as below:

(i) Start with smoke testing (test basic and critical features of an application.)

(ii) Functional testing

(iii) Integration Testing

(iv) System Testing

(v) Regression Testing

(vi) Compatibility Testing

D. Approach, Test Environment, Templates, Roles and Responsibilities, Effort estimation, Entry and exit criteria, Schedule,
Automation, Defect tracking, Assumption, Deliverables, Risks, Mitigation/Backup/Contingency plan.

E. Test Plan Identifier ,Test Items, Software Risk Issues ,Features to be Tested ,Features not to be Tested ,Approach ,Item
Pass/Fail Criteria , Suspension Criteria and Resumption Requirements , Test Deliverables ,Remaining Test Tasks ,Staffing
and Training Needs ,Responsibilities , Schedule ,Approvals ,Glossary[6]

Table 1

TEST CASE TEMPLATE
HEADER

Test Case Name Id

Test Case Type Functional/Integration/Systems
Requirement

Module
Status

Severity Critical/Major/Minor
Release
Version

Pre-Condition
Test Data

Brief Description
BODY

Steps
Inputs

Description
Expected Result

Actual Result
Status

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 835

Comments
FOOTER

Author
Date

Approved By
Reviewed BY

[9][10]

2.2 Bug Life Cycle

Bug life cycle is a complete life cycle of a bug. Whenever a bug is fixed, we retest the bug and change the status accordingly.
It might be closed or re-open. We get bugs because of

 Wrong code i.e., logic of the program is wrong or functionality does not work according to the requirement.

 Missing code i.e., developer has forgotten to develop that particular feature and it is not available in the
application.

 Extra coding i.e., developer has created a feature which is not available in the requirement but exists in
application.

Following are the entire process of bug life cycle:

STEPS:-

 As soon as we get a bug status of bug is “New/Open”.

 The bug is reported to the concerned person by changing the status as “Assigned”.

 Once developer gets the bug, first he is going to go through the bug i.e., check if it is valid or not then if it is valid
bug start re-producing the bug i.e., perform the actions on the application according to steps mentioned in the bug
report and then change the code.

 Once the code changes are done, the developer changes the status to “fixed”.

 The test Engineer starts re-testing the bug and if it is fixed properly then changes the status to “closed”. Else if bug
is still exists then status is change to “reopen” and assign it back once again to the developer.

 This process continues until the bug is “fixed” or “closed”. [7][8]

Fig-1

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 836

2.3 Classification of Defect

A defect in software testing is an error in programming or logic that causes a program to failure or to produce
wrong/unexpected outcome.

Following are the different types of defects/bug:

A. Invalid or rejected bug

Whenever scenario is wrong and developer does not accept it as a bug then it is called invalid/rejected bug.

This bug generally occurred due to the following cases:

Case 1:- if Test Engineer misunderstood the requirement and may log the bug then developer will change the status to
invalid. Then again Test Engineer go through it and if he also feel that it’s invalid and closes the bug by keeping the status
as close.

Case 2:- if developer misunderstood the requirement and changes the status to invalid after go through. The Test Engineer
will go through the bug and he also may reproduce it and if the bug exists really he changes the status from invalid to re-
open.

B. Duplicate bug

When same bug is found by different Test Engineer then it is known as duplicate bug. This bug is occurred because of
following reasons:

 Common features (modules) which is access by both the Test Engineer.

 Dependent features.

SOLUTION FOR AVOID DUPLICATE BUG

i. Search in bug repository, if bug already exists, do not log (report) a bug. If bug does not exist, log (report) a bug and store
in bug repository.

ii. Send it to developer and carbon copy to all test engineers.

C. Not-Reproducible bug

Developer accepts the bug but not able to find the same bug after following the navigation steps mentioned in the bug
report.

Reasons for not-reproducible bug:

 Platform mismatch

i. Server mismatch

Test Engineer tests the application in one server and developer may reproduce the bug in another server, to avoid this
mention server name in bug report.

ii. Environment mismatch

Test Engineer tests the application in different operating system and browser and developer may reproduce the bug in
different operating system and Browser, to avoid this mention platform name in bug report.

 Data mismatch

Scenario may be correct, but for testing an application, Test Engineer use different data and developer may use different
data for reproducing the bug, to avoid this mention test data in bug report.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 837

 Build mismatch

Test Engineer got a bug in one build and developer reproduce the same bug in different/another build due to time
constraint it is known as build mismatch.

D. Can’t fix bug

Developer accept the bug, also able to reproduce it but not able to perform code changes due to some reasons. These
reasons are as follows that’s why developer can’t fix the bug:

1. Core of code (bug is in the core of code)

2. No technology support

If there will be major changes in bug then developer can’t say that can’t fix that bug. Can’t fix bug should be minor bug but
all minor bug cannot be can’t fix bug.

E. In-consistent bug

In first time Test Engineer found a bug but after that he is not able to find the same bug in next time, so to avoid the
inconsistency Test Engineer should take the screenshot and follow the following steps:

1. As soon as Test Engineer got the bug first to take the final screenshot of that bug.

2. Re-confirm the bug whether it is consistent or not.

3. If bug is consistent then search the bug in bug repository. If bug report is not found then prepare the bug report and
send it to the developer.

F. Deferred/Postpone bug

Even though there is a bug, it is postpone to the future releases due to time constraint. Due to time constraint developer
going to make it to deferred i.e. he will fix it in next release. In the initial builds, bugs can’t be deferred but in the later
stages due to the time limit he can deferred the bug. But the test engineer will check that bug can be really deferred or not.
Deferred bug can be minor bug but the entire minor bug cannot be deferred. We cannot close the bug until it is fixed in
next release.

G. Requests for Enhancement

These are the suggestion given by the test engineer towards the enhancement of the application.

Table 2

 [9][10]

BUG REPORT TEMPLATE
1. Date:
2. Reporter :
3. Assigned to :
4. Status :
5. Severity :
6. Priority :
7. Server :
8. Platform :
9. Test Data :
10. Build # :
12. Brief Description :
13.Steps to reproduce :
14. Observation :
15.Expected result
16. Attachments

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 838

3. METHODOLOGY

Black-Box Design Technique

Equivalence partitioning - Equivalence partitioning or equivalence class partitioning (ECP) is a software testing
technique that divides the input data of a software unit into partitions of equivalent data from which test cases can be
derived. In principle, test cases are designed to cover each partition at least once. This technique tries to define test cases
that uncover classes of errors, thereby reducing the total number of test cases that must be developed. An advantage of
this approach is reduction in the time required for testing software due to lesser number of test cases.

Equivalence partitioning is typically applied to the inputs of a tested component, but may be applied to the outputs in rare
cases. The equivalence partitions are usually derived from the requirements specification for input attributes that
influence the processing of the test object. [11]

Boundary Value Analysis- Boundary value analysis (BVA) is based on testing at the boundaries between partitions.

Here we have both valid boundaries (in the valid partitions) and invalid boundaries (in the invalid partitions).

As an example, consider a printer that has an input option of the number of copies to be made, from 1 to 99. To apply
boundary value analysis, we will take the minimum and maximum (boundary) values from the valid partition (1 and 99 in
this case) together with the first or last value respectively in each of the invalid partitions adjacent to the valid partition (0
and 100 in this case). In this example we would have three equivalence partitioning tests (one from each of the three
partitions) and four boundary value tests. Consider the bank system described in the previous section in equivalence
partitioning.

Because the boundary values are defined as those values on the edge of a partition, we have identified the following
boundary values: -$0.01 (an invalid boundary value because it is at the edge of an invalid partition), $0.00, $100.00,
$100.01, $999.99 and $1000.00, all valid boundary values. So by applying boundary value analysis we will have six tests
for boundary values. [11]

Decision Tables - Decision tables are a concise visual representation for specifying which actions to perform depending
on given conditions. They are algorithms whose output is a set of actions. The information expressed in decision tables
could also be represented as decision trees or in a programming language as a series of if-then-else and switch-case
statements.

Each decision corresponds to a variable, relation or predicate whose possible values are listed among the condition
alternatives. Each action is a procedure or operation to perform, and the entries specify whether (or in what order) the
action is to be performed for the set of condition alternatives the entry corresponds to.

To make them more concise, many decision tables include in their condition alternatives a don't care symbol. This can be a
hyphen [12] or blank although using a blank is discouraged as it may merely indicate that the decision table has not been
finished. One of the uses of decision tables is to reveal conditions under which certain input factors are irrelevant on the
actions to be taken, allowing these input tests to be skipped and thereby streamlining decision-making procedures.[13],

Aside from the basic four quadrant structure, decision tables vary widely in the way the condition alternatives and action
entries are don’t care symbol represented.[14] Some decision tables use simple true/false values to represent the
alternatives to a condition (similar to if-then-else), other demonstration tables may use numbered alternatives (similar to
switch-case), and some tables even use fuzzy logic or probabilistic representations for condition alternatives.[16] In a
similar way, action entries can simply represent whether an action is to be performed (check the actions to perform), or in
more advanced decision tables, the sequencing of actions to perform (number the actions to perform).

A decision table is considered balanced [13] or complete [18] if it includes every possible combination of input variables. In
other words, balanced decision tables prescribe an action in every situation where the input variables are provided.[13]

State transition table - In automata theory and sequential logic, a state transition table is a table showing what state (or
states in the case of a nondeterministic finite automaton) a finite semi automaton or finite state machine will move to,
based on the current state and other inputs. A state table is essentially a truth table in which some of the inputs are the
current state, and the outputs include the next state, along with other outputs. [23]

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Equivalence_partitioning#cite_note-1
http://istqbexamcertification.com/what-is-equivalence-partitioning-in-software-testing/
http://istqbexamcertification.com/what-is-equivalence-partitioning-in-software-testing/
https://en.wikipedia.org/wiki/Equivalence_partitioning#cite_note-1
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Switch_statement
https://en.wikipedia.org/wiki/Don%27t-care_term
https://en.wikipedia.org/wiki/Decision_table#cite_note-Ross-3
https://en.wikipedia.org/wiki/Decision_table#cite_note-WetsEtAl1996-8
https://en.wikipedia.org/wiki/Decision_table#cite_note-Snow-4
https://en.wikipedia.org/wiki/Decision_table#cite_note-Ross-3
https://en.wikipedia.org/wiki/Decision_table#cite_note-Snow-4
https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://en.wikipedia.org/wiki/Semiautomaton
https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Decision_table#cite_note-Snow-4

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 839

State Transition testing, a black box testing technique, in which outputs are triggered by changes to the input conditions or
changes to 'state' of the system. In other words, tests are designed to execute valid and invalid state transitions

When to use?-

 When we have sequence of events that occur and associated conditions that apply to those events

 When the proper handling of a particular event depends on the events and conditions that have occurred in the
past

 It is used for real time systems with various states and transitions involved

Example: A System's transition is represented as shown in the below diagram:

Fig-2

The tests are derived from the above state and transition and below are the possible scenarios that need to be tested.

Table 3

Tests Tests 1 Tests 2 Tests 3

Start State Off On On

Input Switch ON Switch Off Switch Off

Output Light ON Light Off Fault

Finish State ON OFF On

 [15]

4. RESULT

With the help of Testing we can reduce the bug from the software but it cannot prove that there is no remaining bug or
software is bug free. The main reasons for bug rejections are improper bug reports and inadequate information of test
engineer over the developed project. To avoid such kind of bug we should prepare a proper bug report. To start the testing
process firstly test engineer should have a clear knowledge of requirement. After that he can clearly identify the bug. He
should prepare the test document and test plan as per the requirement. Based on these test plan further test engineers can
prepare the test case where all the positive as well as negative scenarios are included. And prepare test case, test scenario,
bug report template in such a way that any other person can easily reproduce the same scenario or identify the bug
without wasting time over reviews and rework. Development team as well as testing team should be a part of requirement
gathering team for enhanced understanding of software requirements. It will help the project team to have a proper
proposal of scope and restrictions to avoid rework.

5. CONCLUSIONS

Requirement Analysis forms the backbone of software. Software is bug free with the help of software testing processes like
as testing design techniques, software test plan, test case execution, test strategies etc.

If we prepare the proper bug report then the entire bug should be resolved by developer easily.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 840

Development team also understands the requirement and they resolved the bugs and send the report to the Tester. By this
process client get the bug free software.

Today, testing is the most challenging and dominating activity used by industry, therefore, improvement in its
effectiveness, both with respect to the time and resources, is taken as a major factor by many researchers The purpose of
testing can be quality assurance, verification, and validation or reliability estimation.

6. REFERENCES

[1] Itti Hooda, et al. “Software Test Process, Testing Types and Techniques”, International Journal of Computer
Applications (0975 –8887) February 2015, Volume 111 – No 13.

[2] Jonathan B. Rosenberg. How Debuggers Work. John Wiley & Sons, London, 1996

[3] Quantify the time and cost saved using reversible debuggers. Survey done on Cambridge Judge Business School, 2012.

[4] Roger S. Pressman “ Software Engg. A Practitioner’s Approach “, 6th Edition.

[5] Si Huang, Myra Cohen, and Atif M. Memon(2010) “Repairing GUI Test Suites Using a Genetic Algorithm, “In Proceedings
of the 3rd IEEE International Conference on Software Testing Verification and Validation(ICST).

[6] Cirstian Cadar et al,“ Symbolic Execution for Software Testing in PracticePreliminary Assessment “, ICSE, May, 2011.

[7] Aranda, J., & Venolia, G., et al. “The Secret Life of Bugs: Going Past the Error and Omissions in Software Repositories”,
31st IEEE International Conference on software Engineering (ICSE), 2009, pp298-308.

[8] Qin, F., Tucek, J., & Zhou, Y., et al. “Treating Bugs As Allergies: A Safe Method for Surviving Software Failures”,
Proceedings of the10th conference on Hot Topics in Operating Systems (HOTOS), 2005, Vol. 10, pp.19-19.

[9] Breu, S., Premraj, R., Sillito, J., & Zimmermann, T., et al. “Information needs in bug reports: improving cooperation
between developers and users”, Proceedings of the 2010 ACM conference on Computer supported cooperative
work(CSCW), 2010, pp301-310.

[10] Giovanni Denaro, Bernhard Scholz, Zhi Quan Zhou, et al. "Automated Software Testing and Analysis: Techniques,
Practices and Tools", 2014 47th Hawaii International Conference on System Sciences, p. 260, 2007,
doi:10.1109/HICSS.2007.96.

[11] Burnstein, Ilene (2003), Practical Software Testing, Springer-Verlag, p. 623, ISBN 0-387-95131-8

[12] Ross, Ronald G. (2005). "Decision Tables, Part 2 ~ The Route to Completeness". Business Rules Journal. 6 (8).
Retrieved 11 November 2017.

[13] Snow, Paul (19 July 2012). "Decision Tables". DTRules: A Java Based Decision Table Rules Engine. Retrieved 11
November 2017.

[14] Rogers, William T. "Decision Table Examples: Medical Insurance". Saint Xavier University Systems Analysis and
Design. Archived from the original on March 29, 2007.

[15]https://www.tutorialspoint.com/software_testing_dictionary/state_transition.htm

[16]Breen, Michael (2005), "Experience of using a lightweight formal specification method for a commercial embedded
system product line" (PDF), Requirements Engineering Journal, 10 (2), doi:10.1007/s00766-004-0209-1

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-95131-8
https://www.brcommunity.com/articles.php?id=b243
http://www.dtrules.com/newsite/?p=90
https://web.archive.org/web/20070329015839/http:/web.sxu.edu/rogers/sys/decision_tables.html
http://web.sxu.edu/rogers/sys/decision_tables.html
https://www.tutorialspoint.com/software_testing_dictionary/state_transition.htm
http://mbreen.com/experience.pdf
http://mbreen.com/experience.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2Fs00766-004-0209-1

