
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 38

Estimating various DHT protocols

Vishal Wadhwani1, Nayan Jain2

1,2B.E.:Computer Engineering Dept., VESIT, Mumbai, India.
---***--
Abstract - This project involves the use of Peer-to-Peer
networks to facilitate premium digital content streaming.
Clients seeking this service will not have to rely upon a third
party to ensure the safety of the data. Our system mitigates
the common problems associated with centralized systems
such as trust issues, data failures, outages and traditional
security concerns. Unlike the non-standard encryption in
centralized systems, we use client-side encryption to ensure
data privacy against the nodes storing the data. Data
availability is a major concern associated with the Peer-to-
Peer networks. We seek to solve this problem with a
verification system proposed by Storj[1] which involves a
challenge-response protocol. We further propose a model
for distributing and accessing the data referencing the
BitTorrent ‘Distributed Sloppy Hash Table’ protocol[4]
based upon the Kademlia protocol[2]. Each node in our
network is a valid Ethereum address. To implement the
above-stated project we had to compare the below three
protocols.

 Keywords—Distributed hash table, Tapestry, Chord,
Kademlia.

1. INTRODUCTION

Distributed hash table protocols might look identical in
some aspects such as node forward lookups, but they have
their share of discrepancies in terms of the amount of state
they possess, search for low latency routes, selecting
between alternatives for parameters like frequency, etc.

Instead of the traditional approach of comparing DHT's
with focus on hop-count latency, or routing size table we
are assessing the protocols in the face of joining and
leaving protocols. It will make it simple to examine
tradeoffs between state maintenance detriments and
lookup performance. In this paper, we will be analysing
three Distributed Hash Table protocols namely, Kademlia,
Tapestry and Chord as they exhibit a wide variety of
design choices for Distributed Hash Table protocols.

The illustration of inter-node latencies has been realised
using a simple simulator called King method. The King
method overlooks the effects of congestion. Using lookup
operations and churn we distinguish the performance of
the protocols. We examine these protocols under varying
settings of the parameters and come up to a conclusion
that the protocols can have similar or different
performance depending on the parameters.

In our framework, we are comparing different cost and
performance measures. Instead of conventional cost
measures of CPU time or memory we are using the
number of bytes of the message sent. For performance, we
are using lookup latency as the performance metric in
place of success rate or hop-count. We penalise or award
toward the cost of the framework depending upon the
efficacy of the routes taken by the protocol. We have
delineated the model to highlight the discrepancies solely
based upon our choice of parameters. We assess each DHT
over a range of parameter values, planning a performance
envelope from which we can extrapolate an optimal cost-
performance tradeoff curve.

2. Protocol Overview

In this paper, we estimate the performance of three
Distributed Hash Table protocol(Tapestry, Chord, and
Kademlia) using the mentioned framework. In this section,
we try to present a concise summary of each of the above-
mentioned DHT and discern the tunable parameters.e.

Tapestry is a peer-to-peer overlay network which
provides a distributed hash table, routing, and
multicasting infrastructure for distributed applications.

Tapestry has a large identifier space. This identifier space
is produced using the SHA-1 algorithm. This is a 160-bit
identifier space represented by 40 digit hex key. In this
large identifier space, each node is assigned an unique
node id. NodeIDs and GUIDs are roughly evenly
distributed in the overlay network with each node storing
several different IDs. Multiple applications sharing the
same overlay network increases efficiency as tapestry’s
efficiency increases with network size.

To locate a piece of data in the P2P system we use Chord
where every node, where data is stored, is mapped to a
key in a distributed system in a scalable manner.

Using SHA1 Cryptographic Hash Algorithm chord uses
uniform hashing to map every node and data to an m bit
identifier. The address of both the node and data item is
the SHA1 of IP in the case of node and content in the case
of the data item. Considering identifiers are arranged in a
circular manner and every data item is mapped to a node
whose id is equal to data item's id. Every node stores

A.Tapestry

B. Chord

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 39

routing information about nodes 1, 2, 4, 8 ... hops away.
This information is stored in the finger table.

On receiving a key to lookup, a node reroutes it to another
node close to the key's id. Stabilization protocol keeps the
finger table correct in case of failure. Successor list
contains information about r next successors in the circle.
On failure of a node, it will be replaced with the next live
node in its successor table.

C. Kademlia

One of the most popular peer-to-peer (P2P) architecture
in use today is Kademlia. Kademlia has many advantages
over other DHTs. These advantages make it a more
preferable choice over other DHTs. These advantages
include:

 It minimizes the number of inter-node introduction
messages.

Configuration knowledge such as nodes on the network
and neighbouring nodes spread automatically as a result
of key lookups.

Nodes in Kademlia are aware of different nodes. This
enables routing queries through low latency paths.

Kademlia avoids timeout delays from failed nodes using
parallel and asynchronous queries.

Kademlia is immune to some DOS attacks.

To give a simplified version of Kademlia we can delineate
it as a binary tree where the leaves represent the nodes. In
this tree, by tracing the bit value of the edges of the node
we can find the participating key. Over this, the Kademlia
protocol ensures that every node knows at least one node
in each of its subtrees if that subtree contains a node.

The closeness of keys x and y are taken by computing the
XOR value of the two keys. Kademlia converges to the
lookup target in many steps by finding the successively
closer nodes to the desired ID. Using a replication
parameter Kademlia specifies the number of nodes on
which a data should be replicated. Routing table and
network information of a node are stored at the node state
and at each remaining node the routing table containing
contacts of other DHT nodes is stored. This routing table is
made up of 160 buckets with each bucket storing k
contacts at different distances away from the node for
some notion of distance.

Kademlia has four RPCs: PING, STORE, FIND_NODE and
FIND_VALUE. The PING remote procedure call examines a
node to see if it’s online. The STORE remote procedure call
directs a node to store a [key, value] pair for later
retrieval. The FIND_NODE remote procedure call takes a
160-bit key as an argument, the recipient of the
FIND_NODE remote procedure call returns knowledge for
the k nodes nearest to the target id. The FIND_VALUE
remote procedure call behaves like FIND_NODE returning
the k nodes nearest to the target Identifier with one

anomaly – on accepting a STORE key, the remote
procedure call just returns the stored value.

3. Evaluation

The DHTs have been implemented in P2PSIM, a discrete-
event packet-level simulator. The simulated network
consists of 1,024 nodes with inter-node latencies derived
from measuring the pairwise latencies of 1,024 DNS
servers using the King method. The round-trip delay is
152 milliseconds. The simulator does not simulate link
transmission rate or queuing delay. Only key lookup is
involved.

Nodes issue lookups for random keys at interims
exponentially diffused with a mean of ten minutes and
nodes crash and rejoin at exponentially diffused intervals
with a mean of one hour. This choice of mean session time
is uniform with past studies, while the lookup rate
guarantees that nodes perform numerous lookups per
session. All experiments run for a duration of six hours
with nodes keeping their IP address and ID for the time
span of the experiment.

A. Protocol Comparison

A protocol has numerous parameters that influence its
cost and performance. There is no single reliable
aggregate of parameter values. Instead, there is a set of
best possible cost-performance sequences: for each given
cost, there is a least feasible latency, and for each latency,
there is a least feasible cost.

B. Parameter Exploration

The first question to be answered is what parameters do
we choose who have relative importance on the
performance tradeoff for a single protocol and whether
similar parameters have a similar effect on the
performance of different protocols. Because of the
interaction between parameters, the question is quite
complex to be answered easily. After careful examination,
we have chosen the below parameters for each of our
protocols.

Tapestry: Base (2 – 128), Stabilization interval (36 sec –
19 min), Number of backup nodes (1–4), Number of nodes
contacted during repair (1 – 20).

Chord: Number of successors (4 – 32), Finger base (2 –
128), Finger stabilization interval (40 sec – 19 min),
Successor stabilization interval (4 sec – 19 min).

Kademlia: Nodes per entry (4, 8, 16, 32), Parallel lookups
(1 – 10), Stabilization interval (20 min – 1 hour).

Keeping the above parameters in consideration we then
plot the average lookup latency to average live bandwidth.
To separate the influence of a single parameter, we
calculate the convex hull segment for every value of a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 40

parameter while varying all the other parameter values.
This helps in tracing the full convex hull.

Chord:

In Chord finger and successors are stabilised separately.
By our observation faster rates result in wasted
bandwidth while slower rates result in a greater number
of timeouts during lookups. The finger stabilization
interval is independent of success rate in term of
performance so its value must be varied to achieve the
best tradeoff. Faster finger stabilization results in lower
lookup latency due to fewer timeouts, but at the at a much
higher communication cost. In Chord, there is no
particular best base value like in Tapestry. In Chord, there
is a more involved join algorithm that samples a larger
number of candidate neighbours during PNS.

Kademlia:

In Kademlia the parameter parallel lookup causes a
decrease in latency at higher values but at the cost of more
lookup traffic. Our observation also shows that the
Kademlia stabilization interval has little impact on latency,
but it does increase communication cost. Though it does
decrease the number of routing table entries pointing to
dead nodes and thus limits the number of timeouts during
lookups. However, parallel lookups already assure that
these timeouts are not on the critical path for lookups, so
their exclusion does not decrease lookup latency

Tapestry

The latency results in Tapestry are a bit counter-intuitive:
every value of base is able to achieve the identical lookup
performance, even though a meagerer base results in
more hops per lookup on average. This response is due to
Tapestry’s contiguity routing. The starting hops in every
lookup tend to be to nearby neighbours, and so the time
for the lookup becomes overshadowed by the last hop,
which is vital to a random node in the network. Therefore,
in a protocol with proximity routing, the base can be set to
be a small value in order to preserve bandwidth costs due
to stabilization.

As more and more nodes stabilize, they achieve lower
latencies by evading more timeouts on the critical path of
a lookup. Although this development comes at the cost of
bandwidth, the outcomes show that the cost in bandwidth
is peripheral when compared to the savings in lookup
latency. Thus, along with setting the base low, we can also
frequently stabilise to keep routing table up to date.

CONCLUSION

In this paper, we present a unified framework for studying
the cost versus lookup latency tradeoffs in various DHT
protocols and evaluates Tapestry, Chord, and Kademlia in
that framework. Under the discussed conditions, these
protocols can achieve identical performance if parameters
are adequately well-tuned. However, because of the

interaction of parameters within a protocol, the cost
versus performance tradeoff can be affected, but similar
parameters in other protocols, such as base and
stabilization interval, can behave conversely.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain
integrals of Lipschitz-Hankel type involving
products of Bessel functions,” Phil. Trans. Roy. Soc.
London, vol. A247, pp. 529–551, April 1955.
(references)

[2] J. Clerk Maxwell, A Treatise on Electricity and
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[3] I. S. Jacobs and C. P. Bean, “Fine particles, thin films
and exchange anisotropy,” in Magnetism, vol. III, G.
T. Rado and H. Suhl, Eds. New York: Academic,
1963, pp. 271–350.

[4] K. Elissa, “Title of paper if known,” unpublished.

[5] R. Nicole, “Title of paper with only first word
capitalized,” J. Name Stand. Abbrev., in the press.

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa,
“Electron spectroscopy studies on magneto-optical
media and plastic substrate interface,” IEEE Transl.
J. Magn. Japan, vol. 2, pp. 740–741, August 1987
[Digests 9th Annual Conf. Magnetics Japan, p. 301,
1982].

[7] M. Young, The Technical Writer’s Handbook. Mill
Valley, CA: University Science, 1989.

