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Abstract - This project involves the use of Peer-to-Peer 
networks to facilitate premium digital content streaming. 
Clients seeking this service will not have to rely upon a third 
party to ensure the safety of the data. Our system mitigates 
the common problems associated with centralized systems 
such as trust issues, data failures, outages and traditional 
security concerns. Unlike the non-standard encryption in 
centralized systems, we use client-side encryption to ensure 
data privacy against the nodes storing the data. Data 
availability is a major concern associated with the Peer-to-
Peer networks. We seek to solve this problem with a 
verification system proposed by Storj[1] which involves a 
challenge-response protocol. We further propose a model 
for distributing and accessing the data referencing the 
BitTorrent  ‘Distributed Sloppy Hash Table’ protocol[4] 
based upon the Kademlia protocol[2]. Each node in our 
network is a valid Ethereum address.  To implement the 
above-stated project we had to compare the below three 
protocols. 
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1. INTRODUCTION  
 
Distributed hash table protocols might look identical in 
some aspects such as node forward lookups, but they have 
their share of discrepancies in terms of the amount of state 
they possess, search for low latency routes, selecting 
between alternatives for parameters like frequency, etc. 

Instead of the traditional approach of comparing DHT's 
with focus on hop-count latency, or routing size table we 
are assessing the protocols in the face of joining and 
leaving protocols. It will make it simple to examine 
tradeoffs between state maintenance detriments and 
lookup performance. In this paper, we will be analysing 
three Distributed Hash Table protocols namely, Kademlia, 
Tapestry and Chord as they exhibit a wide variety of 
design choices for Distributed Hash Table protocols. 

The illustration of inter-node latencies has been realised 
using a simple simulator called King method. The King 
method overlooks the effects of congestion. Using lookup 
operations and churn we distinguish the performance of 
the protocols. We examine these protocols under varying 
settings of the parameters and come up to a conclusion 
that the protocols can have similar or different 
performance depending on the parameters. 

In our framework, we are comparing different cost and 
performance measures. Instead of conventional cost 
measures of CPU time or memory we are using the 
number of bytes of the message sent.  For performance, we 
are using lookup latency as the performance metric in 
place of success rate or hop-count. We penalise or award 
toward the cost of the framework depending upon the 
efficacy of the routes taken by the protocol. We have 
delineated the model to highlight the discrepancies solely 
based upon our choice of parameters. We assess each DHT 
over a range of parameter values, planning a performance 
envelope from which we can extrapolate an optimal cost-
performance tradeoff curve. 

2. Protocol Overview 
 
In this paper, we estimate the performance of three 
Distributed Hash Table protocol(Tapestry, Chord, and 
Kademlia) using the mentioned framework. In this section, 
we try to present a concise summary of each of the above-
mentioned DHT and discern the tunable parameters.e. 

Tapestry is a peer-to-peer overlay network which 
provides a distributed hash table, routing, and 
multicasting infrastructure for distributed applications. 

Tapestry has a large identifier space. This identifier space 
is produced using the SHA-1 algorithm. This is a 160-bit 
identifier space represented by 40 digit hex key. In this 
large identifier space, each node is assigned an unique 
node id. NodeIDs and GUIDs are roughly evenly 
distributed in the overlay network with each node storing 
several different IDs. Multiple applications sharing the 
same overlay network increases efficiency as tapestry’s 
efficiency increases with network size. 

To locate a piece of data in the P2P system we use  Chord 
where every node, where data is stored, is mapped to a 
key in a distributed system in a scalable manner. 

Using SHA1 Cryptographic Hash Algorithm chord uses 
uniform hashing to map every node and data to an m bit 
identifier. The address of both the node and data item is 
the SHA1 of IP in the case of node and content in the case 
of the data item. Considering identifiers are arranged in a 
circular manner and every data item is mapped to a node 
whose id is equal to data item's id. Every node stores 

A.Tapestry 

B. Chord 
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routing information about nodes 1, 2, 4, 8 ... hops away. 
This information is stored in the finger table. 

On receiving a key to lookup, a node reroutes it to another 
node close to the key's id. Stabilization protocol keeps the 
finger table correct in case of failure. Successor list 
contains information about r next successors in the circle. 
On failure of a node, it will be replaced with the next live 
node in its successor table. 

C.   Kademlia 

One of the most popular peer-to-peer (P2P) architecture 
in use today is Kademlia. Kademlia has many advantages 
over other DHTs. These advantages make it a more 
preferable choice over other DHTs. These advantages 
include: 

 It minimizes the number of inter-node introduction 
messages. 

Configuration knowledge such as nodes on the network 
and neighbouring nodes spread automatically as a result 
of key lookups. 

Nodes in Kademlia are aware of different nodes. This 
enables routing queries through low latency paths. 

Kademlia avoids timeout delays from failed nodes using 
parallel and asynchronous queries. 

Kademlia is immune to some DOS attacks. 

To give a simplified version of Kademlia we can delineate 
it as a binary tree where the leaves represent the nodes. In 
this tree, by tracing the bit value of the edges of the node 
we can find the participating key. Over this, the Kademlia 
protocol ensures that every node knows at least one node 
in each of its subtrees if that subtree contains a node. 

The closeness of keys x and y are taken by computing the 
XOR value of the two keys. Kademlia converges to the 
lookup target in many steps by finding the successively 
closer nodes to the desired ID. Using a replication 
parameter Kademlia specifies the number of nodes on 
which a data should be replicated.  Routing table and 
network information of a node are stored at the node state 
and at each remaining node the routing table containing 
contacts of other DHT nodes is stored. This routing table is 
made up of 160 buckets with each bucket storing k 
contacts at different distances away from the node for 
some notion of distance. 

Kademlia has four RPCs: PING, STORE, FIND_NODE and 
FIND_VALUE. The PING remote procedure call examines a 
node to see if it’s online. The STORE remote procedure call 
directs a node to store a [key, value] pair for later 
retrieval. The FIND_NODE remote procedure call takes a 
160-bit key as an argument, the recipient of the 
FIND_NODE remote procedure call returns knowledge for 
the k nodes nearest to the target id. The FIND_VALUE 
remote procedure call behaves like FIND_NODE returning 
the k nodes nearest to the target Identifier with one 

anomaly – on accepting a STORE key, the remote 
procedure call just returns the stored value. 

3. Evaluation 

The DHTs have been implemented in P2PSIM, a discrete-
event packet-level simulator. The simulated network 
consists of 1,024 nodes with inter-node latencies derived 
from measuring the pairwise latencies of 1,024 DNS 
servers using the King method. The round-trip delay is 
152 milliseconds. The simulator does not simulate link 
transmission rate or queuing delay. Only key lookup is 
involved.  

Nodes issue lookups for random keys at interims 
exponentially diffused with a mean of ten minutes and 
nodes crash and rejoin at exponentially diffused intervals 
with a mean of one hour. This choice of mean session time 
is uniform with past studies, while the lookup rate 
guarantees that nodes perform numerous lookups per 
session. All experiments run for a duration of six hours 
with nodes keeping their IP address and ID for the time 
span of the experiment. 

A. Protocol Comparison 

A protocol has numerous parameters that influence its 
cost and performance. There is no single reliable 
aggregate of parameter values. Instead, there is a set of 
best possible cost-performance sequences: for each given 
cost, there is a least feasible latency, and for each latency, 
there is a least feasible cost. 

B. Parameter Exploration 

The first question to be answered is what parameters do 
we choose who have relative importance on the 
performance tradeoff for a single protocol and whether 
similar parameters have a similar effect on the 
performance of different protocols. Because of the 
interaction between parameters, the question is quite 
complex to be answered easily. After careful examination, 
we have chosen the below parameters for each of our 
protocols. 

Tapestry: Base (2 – 128), Stabilization interval (36 sec – 
19 min), Number of backup nodes (1–4), Number of nodes 
contacted during repair (1 – 20). 

Chord: Number of successors (4 – 32), Finger base (2 – 
128), Finger stabilization interval (40 sec – 19 min), 
Successor stabilization interval (4 sec – 19 min). 

Kademlia: Nodes per entry (4, 8, 16, 32), Parallel lookups 
(1 – 10), Stabilization interval (20 min – 1 hour). 

Keeping the above parameters in consideration we then 
plot the average lookup latency to average live bandwidth. 
To separate the influence of a single parameter, we 
calculate the convex hull segment for every value of a 
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parameter while varying all the other parameter values. 
This helps in tracing the full convex hull.  

Chord: 

In Chord finger and successors are stabilised separately. 
By our observation faster rates result in wasted 
bandwidth while slower rates result in a greater number 
of timeouts during lookups. The finger stabilization 
interval is independent of success rate in term of 
performance so its value must be varied to achieve the 
best tradeoff. Faster finger stabilization results in lower 
lookup latency due to fewer timeouts, but at the at a much 
higher communication cost. In Chord, there is no 
particular best base value like in Tapestry. In Chord, there 
is a more involved join algorithm that samples a larger 
number of candidate neighbours during PNS. 

Kademlia:  

In Kademlia the parameter parallel lookup causes a 
decrease in latency at higher values but at the cost of more 
lookup traffic. Our observation also shows that the 
Kademlia stabilization interval has little impact on latency, 
but it does increase communication cost. Though it does 
decrease the number of routing table entries pointing to 
dead nodes and thus limits the number of timeouts during 
lookups. However, parallel lookups already assure that 
these timeouts are not on the critical path for lookups, so 
their exclusion does not decrease lookup latency 

Tapestry 

The latency results in Tapestry are a bit counter-intuitive: 
every value of base is able to achieve the identical lookup 
performance, even though a meagerer base results in 
more hops per lookup on average. This response is due to 
Tapestry’s contiguity routing. The starting hops in every 
lookup tend to be to nearby neighbours, and so the time 
for the lookup becomes overshadowed by the last hop, 
which is vital to a random node in the network. Therefore, 
in a protocol with proximity routing, the base can be set to 
be a small value in order to preserve bandwidth costs due 
to stabilization. 

As more and more nodes stabilize, they achieve lower 
latencies by evading more timeouts on the critical path of 
a lookup. Although this development comes at the cost of 
bandwidth, the outcomes show that the cost in bandwidth 
is peripheral when compared to the savings in lookup 
latency. Thus, along with setting the base low, we can also 
frequently stabilise to keep routing table up to date. 

CONCLUSION 

In this paper, we present a unified framework for studying 
the cost versus lookup latency tradeoffs in various DHT 
protocols and evaluates Tapestry, Chord, and Kademlia in 
that framework. Under the discussed conditions, these 
protocols can achieve identical performance if parameters 
are adequately well-tuned. However, because of the 

interaction of parameters within a protocol, the cost 
versus performance tradeoff can be affected, but similar 
parameters in other protocols, such as base and 
stabilization interval, can behave conversely. 
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