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Abstract: A metal-insulator-metal (MIM) waveguide system 
that exhibits a slow-light effect, based on a plasmonic 
analogue of electromagnetically induced transparency (EIT), 
is proposed. We have found that MIM Plasmon waveguides 
with stub structure (a branch of the waveguide with a finite 
length), can function as wavelength selective filters of 
submicron size. The proposed compact configuration may also 
find potential applications in optical buffers. 
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1. INTRODUCTION 
 
The velocity of light in vacuum is 3 × 108 ms–1. This high 
velocity is helpful for efficient data transmission, but it 
makes controlling of optical signals, in the time domain, a 
difficult task. This difficulty necessitates the reduction of 
velocity of light and here comes the idea of slow light [1,3]. 
The phenomenon of slow light introduces the possibility of 
various new applications including telecommunications.  

Scientists are now developing photonic routers that can 
exploit all optical processing to avoid the opto-electronic 
conversion that introduces much inefficiency. Here, a key 
device is the plasmonic waveguide [2-4,7] that temporarily 
stores and adjusts the timing of optical packets. Plasmonic 
waveguide can also find potential applications in 
information storage, optical memory, sensor, nonlinear 
optics and optical buffers [6,25]. 

In general, there are three main approaches to generate slow 
light: quantum interference effects or EIT, photonic crystal 
waveguide, and stimulated Brillouin or Raman scattering 
[5,8]. So far, a variety of structures have been reported 
experimentally or theoretically to realize slow light [9,10]. 

In this paper, we introduce MIM plasmonic wavelength 
filtering and demultiplexing devices and present the EIT-like 
effects in MIM waveguide systems with simulations.  

2. SURFACE PLASMON POLARITONS AND 
PLASMONIC WAVEGUIDE 

Surface Plasmons (SPs) are coherent delocalized electron 
oscillations. Under certain conditions, the incident light 
couples with the surface plasmons to create surface Plasmon 

polaritons (SPPs) [14]. The surface Plasmon polaritons are 
electromagnetic waves coupled to the oscillations of 
conduction electrons propagating along the metal-dielectric 
or metal-insulator interface in the direction perpendicular to 
the interface [11,17,18]. The SPPs have the advantage that 
they can overcome the diffraction limit of light in a 
microchip-sized device [22] and that is why they are 
considered as one of the most promising candidates for 
integrated nano photonic components [21,23]. The MIM 
waveguides have the deep-subwavelength confinement of 
light along with an acceptable propagation length for SPP 
propagation.  

 

Fig-1. Propagation of Surface Plasmon Polaritons(SPPs). 

3. ELECTROMAGNETICALLY INDUCED 
TRANSPARENCY  

The electromagnetically induced transparency (EIT) effect is 
a nonlinear effect found in the interaction process between 
light and material. The EIT is observed in atomic systems 
that arises from quantum interference between the atomic 
resonances [12]. The transparency window of the EIT is 
caused by reduced absorption, because of the quantum level 
[15,16]. 

4. WAVELENGTH FILTERING & 
MULTIPLEXING 

Wavelength Demultiplexers (WDMs) that can filter specific 
wavelengths [20] in different channels play very important 
role in the all-optical systems. Based on MIM-coupled 
resonators, some WDM structures were proposed [23,24]. 
However, the transmission efficiencies of those plasmonic 
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WDMs were too low. In our recent work, necessary emphasis 
has been put on the schemes to solve this problem [26–27]. 

5. STRUCTURE & PROPAGATION 

To slow down the propagation of light and store optical 
pulses, waveguide is necessary. Stub structures are 
introduced into the MIM waveguides for the manipulation of 
light at the nanoscale. Recently, some analytical methods 
have been introduced to investigate the optical properties of 
stub waveguides. For instance, the microwave transmission 
line was proposed to characterize the transmission 
properties of MIM stub waveguides [19]. 

In our work, an improved model is employed to calculate the 
transmission for our MIM stub structures. Recently, a variety 
of structures have been reported experimentally and 
theoretically to realize the slow light effect. Nevertheless, 
these structures can only be operated at specific resonant 
wavelength. It is still a challenge to realize slow light over a 
broad bandwidth [13]. Here, we introduce the slow-light 
effect in a MIM plasmonic waveguide with quite broad 
wavelength as shown in Fig - 2. 

 

Fig – 2: Experimental Setup of slow light in MIM 
waveguide. 

When a TM-polarized plane wave is coupled into the MIM 
waveguide, SPP wave can be excited at the metal-insulator 
interface and confined in the insulator layer. In our 
structure, silver is selected as metal and air as the insulator. 
The frequency-dependent relative permittivity of silver is 
given by the Drude model: 
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Here,  

ε∞  = Dielectric constant at infinite angular frequency 

ωp = Plasma frequency 
ω = Angular frequency of the incident wave in vacuum 
γ = Electron collision frequency 

The values of these parameters can be set as ε∞=3.7, ωp = 9.5 
eV and γ = 0.015 eV. According to the transmission line 
theory, the plasmonic waveguide system is equivalent to a 
parallel connection of an infinite transmission line with the 
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and serial finite transmission line with the characteristic 
impedance, Zs terminated by a load ZL (representing the 
stub). Here, MIM waveguide is represented by (2). An 
equivalent circuit of the system is illustrated in Fig - 3.  

 

Fig – 3: Equivalent circuit of MIM plasmonic waveguide. 

For simplicity, the stub section can be replaced by an 
effective impedance described by 
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βs is the propagation constant of the fundamental 
propagating TM mode in the MIM waveguide and h is the 
depth of the corresponding stubs where the short stub depth 
is h1 and long stub depth is h2. On the other hand, q is the 
distance between two stubs in a unit cell. Using transmission 
line theory, the transmission of plasmonic waveguide system 
can be expressed as  
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Fig – 4: Propagation of slow light in MIM waveguide 

6. TRANSMITTANCE SPECTRUM 

We investigate the transmission properties of the MIM 
waveguide coupled to one-unit cell. The propagation of slow 
light in this waveguide is shown in Fig - 4. The EIT-like 
transmission spectrum which can be tuned by changing the 
distance between the two stubs is depicted in Fig - 5. 

 

Fig – 5: Transmittance vs. wavelength graph of slow light 
in MIM waveguide 

From CHART- 1 and CHART - 2, we can see that the central 
wavelength of the narrow-band linearly increases with the 
simultaneous increasing of h1 and h2. 

 

CHART 1: Variation of Maximum transmittance 
wavelength with respect to h1 
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CHART 2: Variation of Maximum transmittance 
wavelength with respect to h2 

7. CONCLUSION 
 
In this paper, we mainly focus on our work about the 
manipulation of light in the MIM plasmonic waveguides. 
Especially, plasmonic wavelength filtering and 
demultiplexing have been introduced. Additionally, the EIT 
effect in the MIM plasmonic systems have been described. 
We propose and investigate a subwavelength slow-light 
waveguide system. The transmission properties are 
investigated. Highest amount of power (80%) is transmitted 
at wavelength of around 815 nm and considerable amount of 
power is transmitted in the range of around 590 to 1050 nm. 
The EIT-based slow light waveguide shows noticeable 
transmittance and thus can be used as a band pass filter. We 
have also found that the wavelength at which maximum 
transmittance occurs, varies linearly with the stub depth h1 
and h2. This plasmonic waveguide system can find other 
potential applications on slow-light systems as well. 
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