
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1810

A Design Approach for Basic Telecom Operation

Dr. Sk Riazur Raheman

Professor, Dept. of Computer Science & Engineering, REC, Bhubaneswar, Odisha, India
--***---
Abstract:- Aspect oriented programming brings the paradigm
shift in the approach of software development. Using aspect
oriented programs crosscutting concerns are handled very
effectively. To enable the consistency checking in a telecom
operation it is better to have the different concerns in a
separate module. This can be achieved easily using the concept
of aspect oriented programming. The application of aspect
oriented programming affects multiple concerns of telecom
operation and hence is a crosscutting concern. The benefit of
aspect oriented programming is its advanced modularization
capabilities which are capable of modularizing crosscutting
concerns. The paper discusses the development of aspect
oriented application for the consistency check of telecom
operation. The crosscutting concerns in telecom operations
are encoded in aspect modules for implementation. Class and
sequence diagrams are designed to depict the telecom
operation.

Keywords: Aspect oriented programming, aspect,
crosscutting, consistency check.

1. INTRODUCTION

The complexity and the requirement of software
development have been increased remarkably in the past.
The reason for this development is because of the demand of
more sophisticated software. To fulfill this demand the
development of software are going to be in modular
approach. These modular approaches are handled in
different programming approach differently. However, there
is a possibility of these modules may overlap with each
other. The concern which exists in different modules is called
as crosscutting concerns. This means that crosscutting
concerns are scattered in different modules. Also these
crosscutting concerns are tangled with the code of other
concerns within a module. If the concerns are scattered in
different modules then it reduces the quality of software.
These crosscutting concerns cannot be generalized as a
separate concern in object oriented programming. Aspect
oriented program works as a better tool for handing this
crosscutting concern. Thus by using the concept of aspect
oriented program, it helps in improving the quality and
modularity of a software.

The performance concerns vital to telecom consistency
check cannot be effectively handled in object oriented
programming. The concerns associated to consistency
checking crosscut the basic functionality. We need a good
programming style that allows developing the crosscutting
concerns as a separate module without disturbing other
basic functionality. There are different types of crosscutting

concerns exist in telecom operations. The concerns like
timing, billing and consistency check are crosscutting
concerns. Consistency check in a telecom operation is to
make sure that all calls and connections are being shut down
in the reality.

2. ASPECT ORIENTED PROGRAM AND CROSSCUTTING
CONCERNS

Aspect Oriented Programming (AOP) is an encouraging new
knowledge for separating crosscutting concerns. Gregor
Kiczales [1] was the first to present the concept of AOP. He
worked on AOP at the Xerox Palo Alto Research Center
(PARC) and stood as a leader in the development of AOP.
AOP improves the system features by adding modularity,
understanding and ease by better handling of crosscutting
concerns. To modularize and localize the code from
crosscutting concerns, AOP uses aspects as a special module.
Some of the prominent AOP features are point-cut, join point
and advice. A point-cut defines a set of join points in an AOP.
Join point used to link the aspect and non-aspect code. An
Advice is associated with a point-cut, it is used to implement
the crosscutting functionality. There are three types of
advices in an AOP, before, after, and around. AOP addresses
the difficulties triggered by crosscutting concerns in the
following means [2, 3, 9, 11, 12, 24].

 Decomposition of the software into modules which
holds the concerns that do not crosscut. This
module is known as non-aspect code. This can be
written by simple java code.

 Identification of the concerns that crosscut the
operation of other concerns and capturing and
applying these concerns into a separate module
known as aspect. This module is known as aspect
code.

Consider the Banking System (BS) to open an account
different phases are registration, verification of identity and
address of a customer. The concerns related to accounts
include minimum balance checking, withdraw and deposit.
All these requirements are core concerns of the banking
system. Also a banking system must have some
requirements related to security and recovery to ensure the
data is well maintained.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1811

These additional requirements are crosscutting
concerns, because these concerns have an impact on other
core concerns. In Figure 1, all the core concerns are shown as
vertical columns and the crosscutting concerns are shown as
horizontal bars that cross the vertical columns. The
crosscutting concerns are the main point of interest of an
AOP.

AspectJ is the best standard tool available for AOP
development. AspectJ is an implementation of AOP. AspectJ
is developed by Xerox Palo Alto Research Center. It is similar
to java and practices similar java like syntax. AspectJ based
on the object model of Java by means of some extra features
that allow AOP procedures to be used. Core concerns are
pure Java code and crosscutting concerns are aspect code.
Some mapping or weaving rules are implemented to link the
crosscutting concerns with primary concerns. An AOP
program is compiled into byte code, and can run on any Java
platform. AOP is written in two parts.

1. Base code
2. Aspect code

Base code contains primary concerns like classes and other
standard Java concepts whereas aspect code includes
crosscutting concerns.

In an AOP, core concerns (non-crosscutting concerns) and
aspects (crosscutting concerns) are developed
independently [9, 12, 13]. Both the aspect and non-aspect
code are joined into an ultimate executable form using the
aspect weaver. As a result, a single aspect code can helps in
the operation of total modules which increases both
reusability and maintainability of the code [6, 7, 9, 10]. The
process of aspect weaving is depicted in Figure 2.

2.1 Basic Design Approach for Telecom Operation

In this section we will discuss about the design approach of a
telephone operation. The class diagram, sequence diagram
and consistency check in a telephone operation will be
discussed.

2.2 Class Diagram

In object oriented system development, the class diagram is
the foundation for the system model. A class diagram gives a
picture of the relationship between different classes. One can
understand the working of each class by viewing at the
related functions. The multiplicity is also shown to know the
system better. In our design approach we have considered
three classes as call, connection and customer [9, 14, 15, 23,
24]. Also we have added the different functionality to each
class as shown in Figure 3.The methods for handling the calls
are described in Customer class. The Connection class
represents the physical particulars of making a connection
among customers. The Call class is shaped for both caller and
receiver. If the area code of caller and receiver are same then
the call is treated as Local connection. Otherwise a
LongDistance connection is required [19, 25].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1812

2.3Sequence Diagram

A sequence diagram demonstrates a communication
between different objects organized in time sequence and
the messages that pass among them when an interaction
takes place. In an aspect oriented software design phase, it is
significant to define the correlation between point-cut and
aspects [8, 14, 15]. This can be represented effectively by a
sequence diagram as shown in Figure 4.

In our design concept we are considering the major objects
as caller, phone and recipient. The communication between
objects is built on operation calls mechanism. The system
mechanism is, when a caller picks up his phone, the network
reacts by sending a tone. This user is now prepared to dial
the telephone number of the recipient. Then the network
directs back a signal which affects a ring on the called phone.
An Echoing is then sent to the caller. We undertake that the
called user is constantly ready to answer a call. When the
called user picks up his phone, the ring is then interrupted
and the two users involve in a talk [19, 20, 25].

2.4Consistency Checking

The object oriented programming approaches lack some in-
built method calls which are necessary before, after or
during an event occur to handle the crosscutting concern,
whereas in AOP, it has an approach like aspect to handle
crosscutting concerns. The performance concerns vital to
telecom consistency check cannot be effectively handled in
object oriented programming. The concerns associated to
consistency checking crosscut the basic functionality. We
need a programming style that allows developing the
crosscutting concerns as a separate module without
disturbing other basic functionality. Also it should handle the
performance issues efficiently even though they crosscut the
module structure of the basic functionality. AOP is mainly
useful for this type of challenges [4, 16, 22, 23].

Consistency check in a telecom operation is to make sure
that all calls and connections are being shut down in the
reality [3]. There are different types of crosscutting concerns
exist in telecom operations. The concerns like timing, billing
and consistency check are crosscutting concerns. The phone

connection time is handled by timing aspect, the billing
aspect uses the connection time to bill the originator of the
call and the consistency check aspect checks the hangup and
merge calls [5, 17,21].

The consistency check aspect has at most interfaces with the
methods in the program, leaving its performance complete
within its original scopes. Consistency check handles the
concerns related to hangup, merge and drop connections [5].
The concerns related to consistency check are depicted in
Figure 5.

2.5Designing Aspect for Consistency Checking

In a telephonic call, call waiting and the conference call are
two features which must be handled properly for
consistency check [20]. Call waiting feature allows a
subscriber already engaged in a communication to be
informed if a new user attempts to reach him. X can either
overlook the new call or can get connected to the new call.
Another feature is a conference call. It allows three users to
interconnect in the following way: Consider a subscriber X
who is communicating with Y. X can then add Z in the talk. To
achieve this objective, X first put Y on hold by pressing hold
button. Then, start a communication with Z. Finally, press
the hold button again, to get, X, Y and Z are connected. X can
remove Z from the conversation by pressing the button. If X
hangs up, Y and Z remain in communication [20].

In order to demonstrate the role of aspects in consistency
checking in telecom operation, an aspects has been designed
based on different functions. The major units for aspect
design are as follows:

1. Caller

2. Phone
a. An after advice to add new calls
b. An after advice to remove calls when recipient

hangup

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1813

c. An after advice to remove calls when a call
merge with other calls

d. An after advice after connection established
e. An after advice after connection drops

3. Recipient

A customer pickup call, merge calls and hangup calls. Like
that the functionality of call module is to store each new call
and removes the call that hangup and merge. The
functionality of connection module is to store each new
connection and remove connections that drop [16, 17, 18].
The concerns related to call and connections are depicted in
the Figure 6, using a simple Java code.

All these crosscutting concerns are depicted in aspect
oriented design of consistency checking in Figure 7. In the
aspect described in Figure 7, consists of two point-cuts one
for calls and another one for connections. It creates two
vectors as, calls and connections for updating the calls and
connections established.

The point-cut described for calls, handles three situations
like, new call, hangup and conference call. When a new call
established then that will be added to calls vector, it is
shown in the first after advice. When the connection hangup
then that call is removed from the calls vector as shown in
the second after advice. In the third after advice of calls
point-cut, it is showing that, when there is a conference call
to other (X), and then other (X) will be removed from the
calls vector.

Like that the point-cut described for the connection
addresses three concerns like, new connection, drop
connection and for handling error. In the first after advice of
connection, when a connection established that one is added
to connections vector. Once the connection is dropped it will
be removed from the connections vector that is shown in
second after advice. The last after advice of connection
point-cut checks the two vectors, calls and connections at
last. If any of the vector is showing any nonzero value, then
there may be some error in connections clean up. So the
aspect defined in Figure 7 describes the details about the
calls and connections.

3. CONCLUSION

In this paper, we suggested a formal approach to detect and
resolve feature interactions within a telecom operation. As
handling crosscutting aspect thrown a lot of challenges, the
proposed approach tried to solve the crosscutting concerns
arises in a consistency check of telecom operation. We have
explained how AOP can help in minimizing the code
complexity of systems without losing essential performance
necessities. We have designed the class and sequence
diagrams based on crosscutting concerns. Also we have
implemented an aspect on consistency check.

REFERENCES

[1] Kurdi, Heba A. "Review on Aspect Oriented
Programming." (IJACSA) International Journal of
Advanced Computer Science and Applications 4, no. 9:
22-27.(2013)

[2] Griswold, Bill, Erik Hilsdale, Jim Hugunin, Wes Isberg,
Gregor Kiczales, and Mik Kersten. "Aspect-oriented
programming with AspectJ." AspectJ. org, Xerox
PARC (2001).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1814

[3] Raheman, Sk Riazur, Abhishek Ray, and Sasmita
Pradhan. "Dynamic slicing of aspect-oriented
programs using aodg." International Journal of
Computer Science and Information Security 9, no. 4:
123.(2011)

[4] Laukkanen, Jyri. "Aspect-Oriented
Programming." University of Helsinki, Department of
Computer Science (2008).

[5] Pollice, Gary. "A look at aspect-oriented
programming." Online article: http://www. ibm.
com/developerworks/rational/library/2782. html
Published Feb 17 (2004).

[6] Tapan Kant et. al. “Redesign of Hot Spots using Aspect-
Oriented Programming”. International Journal of
Computer Applications (0975 – 8887) Volume 117 –
No. 19, May (2015).

[7] Kiczales, Gregor, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William Griswold. "An
overview of AspectJ." ECOOP 2001—Object-Oriented
Programming : 327-354.(2001)

[8] Robinson, David. "An introduction to aspect oriented
programming in e." 2006-09-15]. http://www,
verilab. com/-downloads, html. (2006).

[9] Qamar, M. N., Aziz Nadeem, and R. Aziz. "An Approach
to Test Aspect-oriented Programs." In World Congress
on Engineering, pp. 211-216. (2007).

[10] Vaira, Žilvinas, and Albertas Čaplinskas. "Case Study
Towards Implementation of Pure Aspect-oriented
Factory Method Design Pattern." (2011).

[11] Raheman, Sk Riazur, Amiya Kumar Rath, and M. Hima
Bindu. "An overview of program slicing and its
different approaches." International Journal of
Advanced Research in Computer Science and Software
Engineering 3, no. 11: 435-442.(2013)

[12] Berardi, Daniela, Diego Calvanese, and Giuseppe De
Giacomo. "Reasoning on UML class
diagrams." Artificial Intelligence 168, no. 1-2: 70-
118.(2005)

[13] Eriksson, Hans-Erik, Magnus Penker, Brian Lyons, and
David Fado. UML 2 toolkit. Vol. 26. John Wiley & Sons,
(2003).

[14] Jose M. Felix et. al.. “Aspect-Oriented Programming to
Improve Modularity of Object-Oriented Applications”.
Journal of Software, VOL. 9, NO. 9, September (2014).

[15] Rehab Allah Mohamed Ahmed et. Al. “Extending
Unified Modeling Language to Support Aspect-
Oriented Software Development”. In International

Journal of Advanced Computer Science and
Applications, Vol. 8, No. 1, pp. 208-215, (2017).

[16] Fatima Beltagui, “Features and Aspects: Exploring
feature-oriented and aspect-oriented programming
interactions”. Technical Report No: COMP-003-2003,
Computing Department, Lancaster University,
Lancaster, May (2013).

[17] Madadpour, Somayeh, Seyed-Hassan Mirian-
Hosseinabadi, and Vahdat Abdelzad. "Testing Aspect-
Oriented Programs with UML Activity
Diagrams." International Journal of Computer
Applications33, no. 8 (2011).

[18] Tom Dinkelaker et. al. “Using Aspect-Oriented State
Machines for Resolving Feature Interactions”. In the
Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 809–
816, ISBN 978-83-60810-22-4, (2011).

[19] Mendhekar, Anurag, Gregor Kiczales, and John
Lamping. RG: A case-study for aspect-oriented
programming. Vol. 9710044. Technical Report SPL97-
009, (1997).

[20] Stein, Dominik, Stefan Hanenberg, and Rainer Unland.
"A UML-based aspect-oriented design notation for
AspectJ." In Proceedings of the 1st international
conference on Aspect-oriented software development,
pp. 106-112. ACM, (2002).

[21] Yuliyan Kiryakov and John Galletly. “Aspect-Oriented
Programming – Case Study Experiences”.
International Conference on Computer Systems and
Technologies – CompSysTech. (2003).

[22] Rinard, Martin, Alexandru Salcianu, and Suhabe
Bugrara. "A classification system and analysis for
aspect-oriented programs." In ACM SIGSOFT Software
Engineering Notes, vol. 29, no. 6, pp. 147-158. ACM,
(2004).

[23] Stein, Dominik, Stefan Hanenberg, and Rainer Unland.
"Designing aspect-oriented crosscutting in UML."
In Workshop on Aspect-Oriented Modeling with the
UML, AOSD'02. (2002).

[24] Lidia Fuentes et. al. “Designing and Weaving Aspect-
Oriented Executable UML models”. In the Journal of
Object Technology. Vol. 6, No. 7, Special Issue: Aspect-
Oriented Modeling, August (2007).

[25] Groher, Iris, and Stefan Schulze. "Generating aspect
code from UML models." In The 4th AOSD Modeling
With UML Workshop. (2003).

