
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1526

DESIGN AND HW/SW IMPLEMENTATION OF A NONLINEAR

INTERPOLATOR FOR BORDER PRESERVING

ANIS Ridha BOUDABBOUS1, Marwa Jomaa GRAJA2

1,2Jouf University, College of Computer and Information Sciences, Kingdom of Saudi Arabia
--***--
Abstract - In this paper, a new design and HW/SW implementation of a nonlinear interpolator for border preserving is presented.
The objective of this proposed work is to achieve significant run time performance using a hardware/software development board.
It also demonstrates consistent image quality performance among a variety of images. We showe that our HW/SW solution
improves considerably the Interpolation speed (258 times faster) compared to software solution as well as preserving a high image
quality.

Key Words: Nonlinear interpolation, color image, HW/SW, FPGA, Reconfigurable Architecture.

1. Introduction

In numerical analysis, interpolation is a mathematical operation to construct a curve from the data of a finite number of points, or a
function from the data of a given finite number of values. The solution of the interpolation problem passes through the prescribed
points, and, according to the type of interpolation. In the case of images, the interpolation consists to "add pixels where there are
none". The degradation of image quality appear when you resize a digital image, or resize it with a distortion, change the
perspective, etc ...So, It is important to understand how interpolation works, to know how to resize your photos by losing as little
quality as possible. In fact, In the image processing applications, image interpolation is a process which estimates a set of unknown
pixels from a set of known pixels in the image. High quality interpolated images are obtained when the pixel values are interpolated
according to the edges of the original images [1]. In the literature, some interpolation methods based on multi-directional filters [2]
and the statistical approach [3], and polyphase weighted median filters [4] are used. Accordingly, the development of image
interpolator for multidimensional data processing has a great importance for various applications. The interpolator is designed to
soften the image and sharpen while preserving image details. The simplest solution is to use a bilinear interpolation and interpolate
each plan independently [5]. This solution is very effective, but it produces a smoothing of the luminance and the appearance of false
colors.

The interpolation technique presented in this paper is a Border-Preserving Interpolator of color image. The complete methodology
for developing the Border-Preserving Interpolator is described in [6] but without any hardware realizations. In this paper, a HW/SW
methodology is used to implement this Interpolator using Altera Stratix II EP2S60F60 FPGA. Indeed, this paper focuses on FPGA
implementation of Border-Preserving Interpolator using a HW/SW context validation. In this way, our work contribution is mainly to
develop a new hardware implementation approach of Border-Preserving Interpolator based on HW/SW codesign context in order to
speed up the Interpolation process compared to the software solution.

So, this paper is structured as follows: Section 2 presents a brief overview of Border-Preserving Interpolator. Section 3 proposes
reconfigurable hardware architecture of the Border-Preserving Interpolator. In section 4, we present the validation results of the
Border-Preserving Interpolator in HW/SW context using Altera Platform. Finally, conclusions are drawn in section 5.

2. Overview of Border-Preserving Interpolator

Border-Preserving Interpolator operates on four samples of decimated multivariate data, a, b, c and d (mask 3x3) to reconstruct
the missing sample x in the central position. The masks that can be used in the interpolation method are given in Figure 1.

a

b

c

d
x

(a) (b)

a b

cd

x

Fig. 1. A 3x3 mask to interpolate the sample x using the known data a, b, c and d. (Border-preserving interpolator)

The normalized value of x verifies two conditions. First, each weight is a positive number. Second, in a flat area (where we
assume that the four neighbors of the pixel under consideration have the same value), the sum of the weights is equal to 1,
which ensures that the output is unbiased. The value of interpolator output is calculated using this equation:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1527

),,,(,;

),,,(,;

2

).(

dcbavuvu
uv

dcbavuvu
uv

w

vuw

x

 b

www
a

www

W

bdbcabdaacab

22

1
 (1)

 d

www
c

www dacdbdcdbcac

22

Where bdacdacdbcab wwwwwwW . The weights are computed based on vector- rational function, as follows:

vuk
wuv

12

1
 (2)

Where dcbavu ,,,, and . denotes 1l norm

The above equation describes how to calculate the value of pixel ‘x’ from known pixels a, b, c and d. The parameter k is a user-
specified depending on the application. Referred to [6], we choose k = 0.025. In this method the interpolation uses weighted

average of known pixels. As can be seen the weights Wuv are calculated using the vector- rational function vuvuf),(.

This use of the function leads to the conclusion that if one pixel different from other pixel only in one component, it will not be
used in the calculation of pixel x. This vector- rational function causes interpolation to use color-edges in the original image as
barriers to color spots, so they won’t attack other part of the image. We recall that the main goal of this work is to reduce the
interpolation processing time. Therefore, the Border-preserving interpolator requires much computation. This is due to the
expensive computation of the vector-rational function given by equation (2). In the following paragraphs, we propose hardware
architecture to accelerate the SW solution of this type of Border-preserving interpolator.

3. Proposed Reconfigurable Hardware Architecture of the Border-Preserving Interpolator

In this part, we propose a new design and HW/SW implementation based on SOPC system (System on Programmable Chip). The
implementation steps are the following :

 C/C++ programming of the interpolator
 Choose HW or SW implementation (Partitioning)
 HW part : Develop the FPGA design and code using VHDL language.
 Program the FPGA
 SW part : Develop the interpolator C/C++ code and validate the code using CPU instruction
 Integrate HW and SW parts in the same FPGA board and check the final functional test.

In fact, the amount of hardware required for an accurate implementation is quite large. This fact is due to the use of the 1l

norm, which requires the computation of the rational function in (2).

 BvBuVvVuRvRuvuNuv
222

 (3)

The Architecture shown in Figure 2 has been used to perform the 1l norm (i.e. Nuv). In this architecture, we use three

subtractions corresponding to R, V, and B components, to calculate (Ru-Rv), (Vu-Vv) and (Bu-Bv). Also, we use three multipliers to
calculate the square. Finally one adder delivers the value of the 1l norm.

The whole interpolator architecture is shown in Figure 3. The architecture described in VHDL consists of some adders and
multipliers to calculate the value of x after calculating W and its inverse. Also, all division by 2 is replaced by right shifts.

This architecture of Border-preserving interpolator was described in VHDL language, validated using Mentor Graphics
ModelSim and synthesized for Altera Stratix II EP2S60F60 FPGA circuit [7] with speed 3 grades. Using ModelSim simulations,
the good functionality of the designed architecture has been verified

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1528

A
D

D

M
U

L

CLK

R
e

g

A
D

D
A

D
D

R
e

g
R

e
g

M
U

L
M

U
L

R
e

g
R

e
g

R
e

g

A
D

D

A
D

D

R
e

g

u

24 bits

v

24 bits

34 bits

Ri

Vi

Bi

Rj

Vj

Bj

Nuv

Fig. 2. Architecture of 1l norm (Nuv)

4. Validation Results of the Border-Preserving Interpolator in HW/SW Context

Using the HW/SW design, we can have several potential advantages. First of all, we minimize overall system cost, development
time and the cost per unit. In addition, we implement only the hardware and software needed for a particular design. Also, we
have the ability to exploit the parallelism and the pipeline in architectures to design. Finally, and Using the HW/SW design, it is
possible to make optimizations in hardware resources (FPGA) and processing time.

4.1 NIOS-II Development Board

The ALTERA NIOS-II softcore processor (Fast version) [8] is a 32-bits scalar RISC with Harvard architecture, 6 pipeline stages, 1-
way direct-mapped 64KB data cache, 1-way direct-mapped 64KB instruction cache and can execute up to 150 MIPS. The main
interest of this softcore processor is its extensibility and adaptability. Indeed, users can incorporate custom logic directly into
the NIOS-II Arithmetic Logic Unit (ALU). Furthermore, users can connect into the FPGA the on-chip processor and custom
peripherals to a dedicated bus (Avalon Bus). Thus, users can define their instructions and processor peripherals to optimize the
system for a specific application.

x1

x 9

x 8

x 7

x 6

x 5

x 4

x 3

x2

CLK

Reset_n

Start

N
a

b

..

..

.

N
a

c
N

b
d

..

..

.

(a)

(b)

(x)

(c)

(d)

..

..

.

M
u

l
M

u
l

M
u

l

k

k

k

A
D

D

12

A
D

D

12

A
D

D

12

Wab

Wac

Wbd

A
d

d
e

rs

W

s
h

ift

M
u

l
M

u
l

M
u

l

s
h

ift
s
h

ift

A
d

d
e

rs

Wab

Wac

Wda

A
D

D

Wab

Wbc

Wbd

A
D

D

s
h

ift

Wac

Wbc

Wcd

A
D

D

M
u

l

Wbd

Wcd

Wda

A
D

D

D
IV

x

Fig. 3. Parallel architecture of Border-Preserving Interpolator

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-
0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-

0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1529

4.2 HW/SW interpolator System

In this part, we developed a connection interface between the Nios II embedded processor and the hardware architecture
across the Avalon bus. The interface entity is given by the figure 4.

VHDL

Description

CLK

Reset_n

rd

wr

Data_in

CSadresse

Data_out

Wait request

Fig. 4. Hardware interface entity

This entity describes the various inputs/outputs of the hardware system HW/SW (or SoPC: System in Programmable Chip). The
different signals (data_in, Data_out etc.) are connected to the Avalon bus and allow the reading, writing and data
synchronization. Table II summarizes the size and function of the signals used in this entity

TABLE II
SIZE AND SIGNAL DESCRIPTION

Signals Size (bits) Description

CLK 1 Clock signal

Reset_n 1 Initialization signal

rd 1 Read Signal

wr 1 Write signal

Data_in 32 Signal Data Input

Adresse 2 addressing

CS 1 Chip Select

Data_out 32 Signal Data Output

waitrequest 1 Wait signal

Figure 5 shows the different parts of the HW/SW implemented system. They are developed in the SoPC Altera environment and
validated using an Altera Nios II development board [9].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-
0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-

0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1530

Interpolator

(coprocessor)
controller

data_in

data_out

data_in

data_out

CS

rd/wr

Wait_request

Configuration_reg

B

U

S

A

V

A

L

O

N

Nios II

CPU

data_from_NIOS

start

IRQ

Timer

UARTSoftware part

Control

signals

RAM Interface

Ethernet

Interface

Fig. 5. The SoPC Interpolator system

The system designed consists of the Nios II processor, the Avalon bus, peripherals (memory controller, UART, timer etc.) and
hardware accelerator (interpolator coprocessor). In our system, the Treatment is mainly based on the Nios II processor, which
is connected to hardware devices via the Avalon bus. This bus is configured in master/slave. It is automatically generated to fit
the needs of the design especially for the interconnection of devices.
The synthesis targeted the Altera FPGA was made using the Altera Quartus II tool. Table I, illustrates the hardware cost in terms
of ALUTs (Adaptive Look-Up Tables), and DSP block and Input output pins in Stratix EP2S60F672C3 FPGA.

TABLE I
THE IMPLEMENTATION RESULTS IN STRATIX II FPGA

Border-preserving interpolator HW coprocessor Whole HW/SW design

ALUTs 967 / 48,352 (2 %) 5,802 / 48,352 (12 %)

Pins 148 / 493 (30 %) 284 / 493 (58 %)

DSP block 129 / 288 (45 %) 138 / 288 (48 %)

The architecture exploits 48% of DSP and 58% of Pins. We use 12% of ALUTs. The whole design process at 60 MHz system
clock.

The software part is used, basically, to optimize the reading of decimated image, the reconstruction of interpolated image and
the loading pixels to and from hardware core (i and j are respectively the length and the width of the image). The used idea [10]
of loading pixels is described by:

• The first interpolator window is formed by sending nine pixels to the hard core.
• The second interpolator window is obtained by exploiting the last six pixels from the previous window and sending only

three new pixels to the hard core.
• The jth interpolator window is obtained by exploiting the last six pixels from the (j-1)th window and sending only three new

pixels to the hard core.

In addition, in this work, we use the μClinux as an operating system to control the functionality of the design. Linux for
embedded systems (or embedded Linux) gives us several benefits: It is ported to most of processors with or without Memory
Management Unit (MMU). A Linux port is available for the Nios II softcore. Most of classical peripherals are ported to Linux. A
file system is available for data storage. A network connectivity based on Ethernet protocols is well suited for data recovering.
To control the interpolation coprocessor, the technique of state machine is used. Synchronization is performed also by using
control signals such as start, done, etc.

5. Experimental Results

 The cycle number and the image quality are two main metrics to compare the hardware implementation and software on a
single FPGA platform for experimental validation. In this experiment, the ideal Border-Preserving Interpolator (SW solution) is
compared to its hardware implemented version (HW/SW version) by using a set of standard images. For this, we use the metric
MSU Blocking metric [11]. This metric also contains heuristic method for detecting objects edges, which are placed to the edge of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-
0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-

0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1531

the block. Knowing that the original image (not interpolated) the MSU is equal to 7.33, table III illustrates a comparison between
ideal Border-Preserving Interpolator and its HW/SW version using different QCIF color images (176x144, this size is used by 3G
phone applications).

TABLE III

COMPARISON BETWEEN SW AND HW/SW IMPLEMENTATION

 SW HW/SW

Number of cycles 512110054 1982153

Total time (ms) 8535 33

MSU 6.10 6.21

The HW/SW version of Border-Preserving Interpolator slightly outperforms its respective SW version. This was expected due

to the rounding effects in VHDL description. Nevertheless, the difference between the HW/SW and SW version of Border-
Preserving Interpolator is negligible for the most of cases, which demonstrates the accuracy of the presented architecture.
It is clear that the implemented Border-Preserving Interpolator preserves the chromaticity components and fine details of color
images. We can note that the HW/SW implementation of the Border-Preserving Interpolator provides a good time
improvement (interpolation speed) compared to the software solution. It is clear that the performance using hardware
accelerator (HW/SW solution), is much faster than the execution of algorithms using software solution with approximately
same image quality. This difference is caused by the introduction of the rational function in the Border-Preserving Interpolator.
In reality, the division blocks (used in the architecture) implemented in the FPGA increase unfortunately area occupation and
execution time. This work can be improved by looking for an approximation to calculate rational function (or 1l norm) without

Altera divider. Also, this work can be extended to Angular Interpolator and a complete comparison between different
interpolators. (Image quality and FPGA implementation)

6. Conclusion

In this paper, HW/SW implementation is performed to speed up Border-Preserving Interpolator. So, the actual co-design
based implementation constitutes a balance between the two well known requirements: time and area. Our design is working
at 60 MHz system clock. The execution time using hardware acceleration is acceptable and can be applied to image processing
applications that do not need fast processing (33 ms correspond to 31 frames/s). Also, better improvement in processing time
is possible via different FPGA platforms having higher operating frequency. Finally, we showed that our HW/SW solution
improves considerably the interpolation speed (258 times faster) compared to the software solution.

7. References

[1] Wing-Shan Tam1,2, Chi-Wah Kok1, Wan-Chi Siu1, A MODIFIED EDGE DIRECTED INTERPOLATION FOR IMAGES, 17th
European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009.

[2] Ortwin Franzen*a, Christian Tuschenb and Hartmut Schrödera “Intermediate image interpolation using polyphase weighted
median filters” Proc. SPIE 4304, 306 Nonlinear Image Processing and Pattern Analysis XII USA 2001.

[3] HOMEM, M. R. P. ; MASCARENHAS, N. D. D. . A Statistical Approach for Image Interpolation. In: XX Brazilian Symposium on
Computer Graphics and Image Processing, SIBGRAPI 2007.

[4] Zhongmou Wu, Yun He Combined adaptive-fixed interpolation with multi-directional filters International Journal, Signal
Processing : Image Communication Vol 24 277–286 Elsevier 2009.

[5] K.T. Gribbon and D.G. Bailey “A Novel Approach to Real-time Bilinear Interpolation” Proceedings of the Second IEEE
International Workshop on Electronic Design, Test and Applications DELTA 2004.

[6] Lazhar Khriji, Faouzi Alaya Cheikh, Moncef Gabbouj “High-resolution digital resampling using vector rational filters” Optical
Engineering. 38(5) 893–901 May 1999.

[7] Stratix II device, http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-ii/st2-index.jsp
[8] Nios II Processor http://www.altera.com/devices/processor/nios2/ni2-index.html
[9] Altera Development Board
 http://www.altera.com/products/devkits/altera/kit-niosii-2S60.html
[10] A. Boudabous, A. Ben Atitallah, P. Kadionik, L. Khriji and N. Masmoudi “FPGA implementation of vector directional distance

filter based on HW/SW environment validation” AEU International Journal of Electronics and Communications, Elsevier. Vol
65, N° 3, Pages 250-257, March 2011.

[11] http://compression.ru/video/quality_measure/video_measurement_tool_en.htm

http://www.altera.com/devices/processor/nios2/ni2-index.html
http://compression.ru/video/quality_measure/video_measurement_tool_en.htm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-
0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-

0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1532

(a)

(b)

 (c)

Fig. 6. (a) Original decimeted images, (b) Interpolated image using ideal Border-Preserving Interpolator (c) Interpolated
image using HW/SW Border-Preserving Interpolator implementation

