
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 109

Embedded OpenMAX Driver Robustness

Sarfaraz Shaikh1

1V.V.P.I.E.T, Solapur University, Solapur, India
---***---

Abstract – OpenMAX stands for Open Media Acceleration.
OpenMAX is an cross platform based standard for the
development of multimedia application. It is used across
embedded industry for multimedia application development
across multiple platform. OpenMAX is mainly used in video,
audio, image processing industry. In this paper we will be
discussing different methods on making the OpenMAX APIs
robust so that the fail rate of the multimedia drivers can be
reduced and the development of device driver can be
accelerated. We will also discuss different layers of OpenMAX
and APIs of IL layer in details.

Key Words: OpenMAX, OMX, Video Decoder, Video Encoder,
API, Audio Systems, Image Processing, Video Processing.

1. INTRODUCTION

OpenMAX is free and royalty free cross platform set of API in
C language. It is maintained by Khronos group. We will be
considering the review paper “OpenMAX in Embedded
Systems”. This paper describes the basics of OpenMAX, its
different layers. OpenMAX consists of three major layers
Application layer, Integration Layer, and Development Layer.
The tool that we will be developing for the testing of
OpenMAX API will be based on CPP open source test
framework.

1.1 Gtest

Google test also known as Gtest is a unit testing library
developed on the lines of cpp, it is based on the xUnit
Architecture. The license is based on BSD 3 class and can be
used ofr free. It can be compiled for POSIX and Windows
based platforms. This library makes the debugging process
very easy and makes the development of testing very fast.

Most of the test framework is classified as unit, integration,
functional. Gtest is divided into three category of tests, small
tests, medium tests, and large scale tests.

1.1.1 Small Tests (Unit Tests)

Small tests are mostly single function and module. They are
mostly automated for the testing. The main target of these
tests is to test the functional issues, error conditions, data
corruption if any. Small test generally require a test
environment to be set up. Using small tests a typical test can
be targeted rather than testing the whole system.

1.1.2 Medium Tests (Integration Tests)

Medium tests involve more functionality of the software to
be tested. They are mostly automated. Most of the features of
the system under test interact between each other, this kind
of functionality can be tested under medium tests. The main
aim is to test the interaction of two blocks of system with
each other as expected.

1.1.3 Large Tests (Acceptance Tests)

Large tests mostly target real world scenarios with real user
requirements and data inputs. Large tests mainly target
three or more features. Large tests are result driven tests,
the main aim is to satisfy the user needs. The product should
operate in the real word data after this testing.

2 OpenMAX Software Landscape

The main aim of the framework is to test the Driver level API
of OpenMAX IL layer. That means our aim is to develop an
framework which ill make a direct call to the IL layer API and
test their return errors and missing params.

The OpenMAX has three layers, DL being the lowest layer
and AL being the highest application layer. DL directly
interacts with the Hardware while IL is the part of the Driver
Software. Most of the application makes use of AL layer to
interact with the Driver. But there is provision of bypassing
the AL layer and user can directly interact with the IL layer.
Our test framework will be based on this approach of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 110

bypassing the AL layer and directly interacting with the IL
layer API.

2.1 Test Framework Block Diagram

Below block diagram explains our approach for the test
framework development.

2.2 Test Framework Flow

The first block in our framework is Json input block. End user
needs to give input to the framework like which API to test
and different parameters to that API. There can be multiple
return values that needs to be validated from the API, all
these input information can be provided to framework using
json format. Jason format is easy to understand and also easy
to parse at machine level.

Next block in the design is json parser. The input provided by
the end user will be parsed. Like the API name will be stored
in its proper structure. The return value will be stored. The
input parameters will be stores and validated by the
framework.

The next block is the main gtest block. This block is coded
into cpp for the object oriented nature and ease of use. This
is the open source framework available from Google. This
block will contain individual file for each API supported by
the OMX standard. We will skip the validation for the API not
supported by our hardware GPU.

API Validation block will be responsible for calling the driver
level API and verifying the return values and checking if any
unhandled parameter is passed to driver OMX layer. This
layer should be capable of handling exceptions raised from
driver side.

The Driver layer is the part of hardware GPU which we will
be validating in our framework. We will not make any
changes to the driver code. We will only verify the API and
check for the robustness of API.

3. Raspberry PI OMX Architecture

 Below is the block diagram for GPU on Raspberry PI board.
Raspberry PI is a mini computer available at cheaper price
and mostly used for multimedia applications.

The above block diagram makes clear that OpenMAX layer is
Raspberry PI can directly interact with Kernel Driver for
video core. The video core is capable of image, audio, video
processing. So our robustness framework can be used for
any OpenMAX API supported by Raspberry PI. To enable the
video core on Raspberry PI we require a camera connection
on the board and initialization of the same.

4. Results

The basic API is OMX_Init() this API must return
OMX_ErrorNone if the return value is other than this then
the video core is failed to initialize. If the unexpected value is
returned then the issue can be raised with the maintainers of
OMX_Init(). The time taken for testing this API is around
5.43ms on Raspberry PI board. Time on other platforms may
vary.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 11 | Nov 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 111

Same is the case with OMX_DeInit(), this API uninitialized
the OMX component. If the return value is incorrect then the
Driver has failed to properly uninitialized the Driver part.

Time taken for testing this API is around 6.5ms on Raspberry
PI. Time constrains are not available for other Opensource
Drivers.

For OMX_GetHandle() this important API to start using any
component within OMX framework, Before doing any
decoding or encoding using OMX driver the user must
ensure that the handle is obtained properly from hardware.

This API’s return value can be checked for failure. Time
taken for testing this API is around 6.83ms.

Multiple Driver issues filed using the robustness framework
in different GPU OMX Drivers.

5. CONCLUSION

OPENMAX finds multiple application for the development of
Multimedia application in Embedded systems. OpenMAX is
widely integrated in mobile systems and TV based systems.
Integration of OpenMAX helps developers of different
multimedia domain to form cross platform applications
which can be ported on different architecture and operating
systems.

6. ACKNOWLEDGEMENT

We highly acknowledge the Khronos for properly
maintaining the documentations and updating the
documents for OpenMAX.

RaspberryPI open forums were helpful in getting started
with the initial setup of the board and camera.

REFERENCES

[1] J. Barba, D. de la Fuente, F. Rincon, Member, IEEE, J.C.
Lopez, member, IEEE “OpenMAX” Hardware Native
Support for Efficient Multimedia Embedded System”.

[2] Pablo Penil, Pablo Sanchez University of Cantabria “
UML/MARTE Methodology for Automatic System
Code Generation of OpenMAX Multimedia Applications”.

[3] OpenMAX IL Specifications from Khronos Group.

[4] OpenMAX DL Specification from Khronos Group.

[5] OpenMAX AL Specification from Khronos Group.

