International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

TOTAL DOMATIC NUMBER OF A JUMP GRAPH

N. Pratap Babu Rao
Department of Mathematics S.G. Degree College Koppal (Karnataka) INDIA

Abstract

Let d_{t} and \bar{d}_{t} denotes the total domatic number of a jump graph $\mathrm{J}(\mathrm{G})$ and its complement $\mathrm{J}(\bar{G})$. In this paper wecharactrize the class of all regular jump graphs for which $d_{t}+\bar{d}_{t}=p-2$ where p is the order of $J(G)$.

Key words: Total domination, connected domination, Total domatic number, connected domatic number Mathematics subject-Classification:05C

1. Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. Terms not defined here are used in Harary [1]

Let $\mathrm{J}(\mathrm{G})+(\mathrm{v}, \mathrm{E})$ be a jump graph of order p and size q . a subset S of $V(J(G))$ is dominating set of G if every vertex in $\mathrm{V}(\mathrm{J}(\mathrm{G})$)-S is adjacent to some vertex in S. Let J(G) be a jump graph without isolated vertices. A subset S of $\mathrm{V}(\mathrm{J}(\mathrm{G})$) is called a total dominating set of $\mathrm{J}(\mathrm{G})$ is called the total domination number of $\mathrm{J}(\mathrm{G})$ and is denoted by $\sqrt{\mathrm{t}}_{\mathrm{t}} \mathrm{J}(\mathrm{G})$). The maximum order of a partition of $\mathrm{V}(\mathrm{J}(\mathrm{G})$) into total dominating sets of $J(G)$ is called the total domatic number of $\mathrm{J}(\mathrm{G})$ and is denoted by $\mathrm{d}_{\mathrm{t}} \mathrm{J}(\mathrm{G})$).

Let J(G) be a connected jump graph. a dominating set S of $\mathrm{J}(\mathrm{G})$ is called a connected dominating, if $\langle\mathrm{S}\rangle$ is connected. The cardinality of a minimum connected dominating set is called the connected domination number of $J(G)$ and is denoted by $V_{c}(J(G))$..The minimum order of a partition of V into connected dominating set is called the domatic number of $\mathrm{J}(\mathrm{G})$ and is denoted by d_{c}. The total connected domatic number of complement $\mathrm{J}(\bar{G})$ is denoted by \bar{V}_{t} $\left(\bar{V}_{c}\right)$.The total(connected) domatic number of $\mathrm{J}(\bar{G})$. is denoted by $\bar{d}_{\mathrm{t}}\left(\bar{d}_{\mathrm{c}}\right)$. The maximum and minimum degrees of a vertex in jump graph J(G) are denoted by Δ and δ respectively. For any real number $\left.x, \quad L_{x}\right\lrcorner$ denotes the largest integer less than or equal to x .

Cockayne, Dawes and Hedetniem i[2] have proved the following.

Theorem1.1 [2] if g has p vertices no isolates and $\Delta<\mathrm{p}-1$ then $v \leq p-1$ then $d_{t}+\bar{d}_{t} \leq p-1$ with inequality if and only if G or \bar{G} is isomorphic to C_{4}.

Hence it follows that if G is a graph of order $p>4$ then $d_{t}+$ $\bar{d}_{\mathrm{t}} \leq \mathrm{p}-2$ we give an independent proof of this inequality
which enables us to obtain a characterization of all regular graphs for which $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}}=\mathrm{p}-2$. The characterization of nonregular graph for which $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}}=\mathrm{p}-2$ will be repeated in a subsequent paper.

We need the following theorems
Theorem 1.2 [2] For any graph without isolate $\mathrm{d}_{\mathrm{t}} \leq \delta$
Theorem 1.3 [2] Let G be a regular graph of order p such that both G and \bar{G} are connected. Then
$\mathrm{d}_{\mathrm{c}}+\bar{d}_{\mathrm{c}}=\mathrm{p}$-2if and only if G or \bar{G} is isomorphic to C_{6} or G_{1} or G_{2} Where G_{1} and G_{2} are given in Figure 1

Figure 1

2. Main Results

Theorem 2.1 Let J(G) be any jump graph with at least 5 vertices no isolates and $\Delta \leq \mathrm{p}-2$ then $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}} \leq \mathrm{p}-2$

Proof; Since $V_{t} \geq 2 \quad d_{t} \leq L p / 2 ل$. If G disconnected jump graph with n components, $n \geq 2$, we have $\sqrt{t}^{t} \geq 2 n$ so that d_{t} $\leq{ }^{\mathrm{L}} \mathrm{p} / 2 \mathrm{n}^{\perp}$ and $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}} \leq{ }^{\mathrm{L}} \mathrm{p} / 2{ }^{\perp} \leq \mathrm{p}-2$. Hence. we may assume that both G and \bar{G} are connected.

If $\mathrm{d}_{\mathrm{t}} \leq{ }^{\mathrm{L}} \mathrm{p}_{\mathrm{p}}{ }^{\lrcorner}{ }^{-1}$ and $\left.\bar{d}_{\mathrm{t}} \leq{ }^{\mathrm{L}} \mathrm{p} / 2\right\lrcorner-1$ then the result is trivial. Hence we may assume without loss of generality that $\left.d_{t}={ }^{L} p / 2\right\rfloor$. We consider the following cases

Case i) p is even and $\mathrm{J}(\mathrm{G})$ is r -regular. Then $\mathrm{J}(\bar{G})$ is \bar{r} regular. Where $\bar{r}=\mathrm{p}-1-\mathrm{r}$. Since $\mathrm{d}_{\mathrm{t}} \leq \delta$ we have $\mathrm{r} \geq$ $\mathrm{p} / 2$ so that $\bar{r} \leq(\mathrm{p} / 2)-1$. Hence $\bar{r}_{\mathrm{t}} \geq 3$ and $\bar{d}_{\mathrm{t}} \leq{ }^{\mathrm{L}} \mathrm{P} / 3$ Thus $\left.\left.\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}} \leq \mathrm{L}_{\mathrm{p} / 2}\right\lrcorner+\mathrm{L}_{\mathrm{p} / 3}\right\lrcorner \leq \mathrm{p}-2$ provided $\mathrm{p}>6$ when $\mathrm{p}=6 \mathrm{r}=3$ and $\bar{r}=2$ so that \bar{G} is isomorphic to G hence $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}}=3+1=4=\mathrm{p}-2$.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

Case ii) p is even and $\mathrm{J}(\mathrm{G})$ is non regular Then $\delta \geq \mathrm{p} / 2, \Delta \geq$ $(\mathrm{p} / 2)+1$ so that $\bar{\delta} \geq(\mathrm{p} / 2)-2$ Hence $\bar{d}_{\mathrm{t}} \leq(\mathrm{p} / 2)-2$ and $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}} \leq \mathrm{p}-2$

Case iii): p is odd Then $\Delta \geq\left\lfloor\frac{p}{2}\right\rfloor+1$ and henc it follows that $\bar{r}_{\mathrm{t}} \geq 3$ Then $\left.\bar{d}_{\mathrm{t}} \leq{ }^{\mathrm{L}} \mathrm{P} / 3\right\lrcorner^{2}$

So that $\left.\quad d_{\mathrm{t}}+\bar{d}_{\mathrm{t}} \leq \mathrm{L}_{\mathrm{p} / 2}\right\lrcorner+\mathrm{L} \mathrm{p} / 3 \perp \leq \mathrm{p}$-2 we now proceed to characterize the class of all regular graphs for which $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}}=\mathrm{p}-2$.

Theorem 2.2: Let J(G) be disconnect4ed r-regular jump graph with at least 5 vertices.

Then $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}}=\mathrm{p}$-2. If and only if $\mathrm{J}(\mathrm{G})$ is isomorphic to $2 \mathrm{C}_{3}, 2 \mathrm{C}_{4}, 3 \mathrm{~K}_{2}$ or 2 K
proof; Suppose J(G) has n components. Then it follows from Theorem2.1 that $d_{t}+\bar{d}_{t}=p-2$. If and only if $L p / 2 n$ $\lrcorner+{ }^{\mathrm{L}} \mathrm{p} / 2{ }^{\lrcorner}=\mathrm{p}-2$ and hence $\mathrm{n} \leq 3$ when $\mathrm{n}=2, \mathrm{p}=6$ or 8 when $p=6 J(G)$ is isomorphic to $2 C_{3}$ and $p=8 \quad J(G)$ is isomorphic to $2 \mathrm{~K}_{2}$

Converse is trivial.

Theorem 2.3 Let $J(G)$ be connected 2-regular jump graph with atleast 5 vertices

Then $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}}+\mathrm{p}$-2. If and only if $\mathrm{J}(\mathrm{G})$ is isomorphic to C_{6} or C_{8}

Proof; Trivial

Theorem 2.4 Let J(G) be a r-regular jump graph such that $J(G)$ and its complement
$\mathrm{J}(\bar{G})$ are c onnected and $\mathrm{r}, \bar{r} \geq 3$ Then $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}}+\mathrm{p}$-2. If $\mathrm{J}(\mathrm{G})$ and $\mathrm{J}(\bar{G})$ is isomorphic if
G_{1} or G_{2} where G_{1} and G_{2} are the jump graphs given in Figure 1.

Proof; Suppose $d_{t}+\bar{d}_{t}=p-2$ it follows from theorem 2.1 that
$\mathrm{L}_{\mathrm{p} / 2^{」}}+\mathrm{L}_{\mathrm{p} / 3}{ }^{\lrcorner}=\mathrm{p}-2$ hence $5 \leq \mathrm{p} \leq 12$
$p \neq 6,11$ Since $r, \bar{r} \geq 3$ we have $p \geq 8$ so that $p=8,9,10$ or 12. Now we claim that
d_{t} or $\bar{d}_{\mathrm{t}}={ }^{\mathrm{L}} \mathrm{p} / 2^{\lrcorner}$, otherwise we have $\mathrm{d}_{\mathrm{t}}=\bar{d}_{\mathrm{t}}={ }^{\mathrm{L}} \mathrm{p} / 2{ }^{\lrcorner}$. 1 and hence p is even so that $\mathrm{d}_{\mathrm{t}} \leq \mathrm{r}$ and $\bar{d}_{\mathrm{t}} \leq \bar{r}$. Hence either r or \bar{r} is (p/2)-1 suppose $\bar{r}=(\mathrm{p} / 2)-1$. Then $\bar{d}_{\mathrm{t}} \leq \mathrm{L}$ $\mathrm{p} / 3^{\perp}$ and hence $\mathrm{d}_{\mathrm{t}}+\bar{d}_{\mathrm{t}}<\mathrm{p}-2$, which is a contradiction. Thus d_{tb} or $\bar{d}_{\mathrm{t}}={ }^{\mathrm{L}} \mathrm{p} / 2{ }^{\lrcorner}$suppose $\mathrm{d}_{\mathrm{t}}=\mathrm{L}_{\mathrm{p}} / 2{ }^{\lrcorner}$. If $\mathrm{p}=9$ it follows that $\mathrm{r}=5$ and $\bar{r}=3$ which is impossible. Hence

