TOTAL DOMATIC NUMBER OF A JUMP GRAPH

N. Pratap Babu Rao

Department of Mathematics S.G. Degree College Koppal (Karnataka) INDIA

ABSTRACT - Let d_t and \bar{d}_t denotes the total domatic number of a jump graph J(G) and its complement $J(\overline{G})$. In this paper wecharactrize the class of all regular jump graphs for which $d_t + \bar{d}_t = p-2$ where p is the order of J(G).

Key words: Total domination, connected domination, Total domatic number, connected domatic number Mathematics subject-Classification:05C

1. Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. Terms not defined here are used in Harary [1]

Let I(G)+(v,E) be a jump graph of order p and size q. a subset S of V(J(G)) is dominating set of G if every vertex in V(I(G))-S is adjacent to some vertex in S. Let I(G) be a jump graph without isolated vertices. A subset S of V(J(G)) is called a total dominating set of J(G) is called the total domination number of J(G) and is denoted by $\sqrt{t(J(G))}$. The maximum order of a partition of V(I(G)) into total dominating sets of I(G) is called the total domatic number of J(G) and is denoted by $d_t(J(G))$.

Let J(G) be a connected jump graph. a dominating set S of I(G) is called a connected dominating , if $\langle S \rangle$ is connected. The cardinality of a minimum connected dominating set is called the connected domination number of J(G) and is denoted by $\sqrt{c(J(G))}$. The minimum order of a partition of V into connected dominating set is called the domatic number of J(G) and is denoted by d_c. The total connected domatic number of complement $J(\bar{G})$ is denoted by \sqrt{t} (\sqrt{c}) . The total (connected) domatic number of $J(\overline{G})$. is denoted by \bar{d}_t (\bar{d}_c). The maximum and minimum degrees of a vertex in jump graph I(G) are denoted by Δ and δ respectively. For any real number x, $\ ^{L} x ^{J}$ denotes the largest integer less than or equal to x.

Cockayne, Dawes and Hedetniem i[2] have proved the following.

Theorem1.1 [2] if g has p vertices no isolates and $\Delta < p-1$ then $v \le p-1$ then $d_t + \bar{d}_t \le p-1$ with inequality if and only if G or \overline{G} is isomorphic to C₄.

Hence it follows that if G is a graph of order p > 4 then $d_t +$ $\bar{d}_{t} \leq p - 2$ we give an independent proof of this inequality

***______ which enables us to obtain a characterization of all regular graphs for which $d_t + \bar{d}_t = p-2$. The characterization of nonregular graph for which $d_t + \bar{d}_t = p - 2$ will be repeated in a subsequent paper.

We need the following theorems

Theorem 1.2 [2] For any graph without isolate $d_t \leq \delta$ Theorem 1.3 [2] Let G be a regular graph of order p such that both G and \overline{G} are connected. Then

 $d_c + \bar{d}_c$ =p-2if and only if G or \bar{G} is isomorphic to C₆ or G₁ or G₂ Where G₁ and G₂ are given in Figure 1

Figure 1

2. Main Results

Theorem 2.1 Let I(G) be any jump graph with at least 5 vertices no isolates and $\Delta \leq p-2$ then $d_t + \bar{d}_t \leq p-2$

Proof; Since $\sqrt{t} \ge 2$ $d_t \le \lfloor p/2 \rfloor$. If G disconnected jump graph with n components, $n \ge 2$, we have $\sqrt{t} \ge 2n$ so that $d_t \le \lfloor p/2n^{\perp}$ and $d_t + \bar{d}_t \le \lfloor p/2 \rfloor \le p - 2$. Hence. we may assume that both G and \overline{G} are connected.

If $d_t \leq \lfloor p/2 \rfloor - 1$ and $\bar{d}_t \leq \lfloor p/2 \rfloor - 1$ then the result is trivial. Hence we may assume without loss of generality that $d_t = \lfloor p/2 \rfloor$. We consider the following cases

Case i) p is even and J(G) is r-regular. Then J (\overline{G}) is \overline{r} regular. Where $\bar{r} = p - 1 - r$. Since $d_t \le \delta$ we have $r \ge$ p/2 so that $\bar{r} \leq (p/2) - 1$. Hence $\bar{r}_t \geq 3$ and $\bar{d}_t \leq \lfloor P/3$

Thus $d_t + \bar{d}_t \leq \lfloor p/2 \rfloor + \lfloor p/3 \rfloor \leq p-2$ provided p > 6when p=6 r=3 and \bar{r} = 2 so that \bar{G} is isomorphic to G hence $d_t + \bar{d}_t = 3 + 1 = 4 = p - 2$.

IRJET Volume: 05 Issue: 11 | Nov 2018

www.irjet.net

Case ii) p is even and J(G) is non regular Then $\delta \ge p/2$, $\Delta \ge (p/2) + 1$ so that $\overline{\delta} \ge (p/2) - 2$ Hence $\overline{d}_t \le (p/2) - 2$ and $d_t + \overline{d}_t \le p-2$

Case iii): p is odd Then $\Delta \ge \lfloor \frac{p}{2} \rfloor + 1$ and henc it follows that $\bar{r}_t \ge 3$ Then $\bar{d}_t \le \lfloor p/3 \rfloor^2$

So that $d_t + \bar{d}_t \leq \lfloor p/2 \rfloor + \lfloor p/3 \rfloor \leq p-2$ we now proceed to characterize the class of all regular graphs for which $d_t + \bar{d}_t = p-2$.

Theorem 2.2: Let J(G) be disconnect4ed r-regular jump graph with at least 5 vertices.

Then $d_t + \bar{d}_t = p-2$. If and only if J(G) is isomorphic to 2C₃, 2C₄, 3K₂ or 2K

proof; Suppose J(G) has n components. Then it follows from Theorem2.1 that $d_t + \bar{d}_t = p-2$. If and only if $\lfloor p/2n \rfloor + \lfloor p/2 \rfloor = p - 2$ and hence $n \le 3$ when n=2, p=6 or 8 when p=6 J(G) is isomorphic to $2C_3$ and p=8 J(G) is isomorphic to $2K_2$.

Converse is trivial.

Theorem 2.3 Let J(G) be connected 2-regular jump graph with atleast 5 vertices

Then $d_t + \bar{d}_t + p-2$. If and only if J(G) is isomorphic to C_6 or C_8

Proof; Trivial

Theorem 2.4 Let J(G) be a r-regular jump graph such that J(G) and its complement

J(\bar{G}) are c onnected and r, $\bar{r} \ge 3$ Then d_t + \bar{d}_t + p-2. If J(G) and J(\bar{G}) is isomorphic if

 $G_1 \mbox{ or } G_2$ where $G_1 \mbox{ and } G_2 \mbox{ are the jump graphs given in Figure 1.}$

Proof; Suppose $d_t + \bar{d}_t = p-2$ it follows from theorem 2.1 that

 $\lfloor p/2 \rfloor + \lfloor p/3 \rfloor = p-2$ hence $5 \le p \le 12$ $p \ne 6,11$ Since $r, \bar{r} \ge 3$ we have $p \ge 8$ so that p = 8,9,10 or 12. Now we claim that

dt or $\bar{d}_t = \lfloor p/2 \rfloor$, otherwise we have $d_t = \bar{d}_t = \lfloor p/2 \rfloor$. – 1 and hence p is even so that $d_t \le r$ and $\bar{d}_t \le \bar{r}$.Hence either r or \bar{r} is (p/2)-1 suppose $\bar{r} = (p/2)$ -1. Then $\bar{d}_t \le \lfloor p/3 \rfloor$ and hence $d_t + \bar{d}_t < p$ -2, which is a contradiction. Thus d_{tb} or $\bar{d}_t = \lfloor p/2 \rfloor$ suppose $d_t = \lfloor p/2 \rfloor$. If p=9 it follows that r=5 and $\bar{r} = 3$ which is impossible. Hence

p=8,10, 12 suppose p=10 V= $U_{i=1} V_i$ and $|V_i| = 2$ and $|V_i|$ is total dominating set in J(G). Then $r \ge 5$ and $\bar{r} \le 4$ and $\sqrt{t} \ge 3$ we claim that $\bar{r}_t \ge 4$ suppose { v_1, v_2 , } is a total dominating set in J(\bar{G}) and let $v_2v_1, v_2v_3 \in E$ (J(\bar{G})) we assume that $v_i \in Vi$ I = 1, 2, 3, let w_2 be the other vertex of V_2 Since v_1v_2 , $v_2v_3 \in E$ (J(\bar{G})) it follows that $v_1w_1 \notin E$ (J(\bar{G})) Similarly $v_2w_2 \ _2 \notin E$ (J(\bar{G})) and w2 is not dominated by any vertex of S in J. Then $\sqrt{t} \ge 4$ and $dt \le 2$ so that $d_t + d_t <$ p-2 which is a contradiction. Then $p \ne 10$ by a similar argument $p \ne 12$ Then p = 8 since $d_t = 4$ it follows that d_c = 4. Also r-4 and and $\bar{r} = 3$, dt = 2. Hence by Theporem 1.3 I(G) is isomorphic to I(G_1) or I(G_2).

REFERECES

[1] F. Harary Graph Theory Addison Wesley Reading Mass (1972)

[2] E.J Cockayne, R.M Dawes and S.T. Hedetniemi, Networks 10 (1980)21-219

[3] J. Paulraj Joseph and S. Armugam J. Ramanujan math.Sco,9 (19940 No.1 69-77.

[4] S.Armugam and A. T Thuraiswamy, Indian.J.pure appl. Math.29(5) (1998) 513-515