
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1159

Novel heuristics for no-wait two stage multiprocessor flow shop with
probable rework and sequence dependent setup times

---***---

Abstract - This paper presents a number of novel heuristics
for solving a no-wait two stage multiprocessor flow shop
scheduling problem. To fill in a segment of gap in real
scheduling problems, two practical assumptions including
probable rework and sequence dependent setup times are
considered this study. A number of evolutionary algorithms
namely, discrete particle swarm optimization (DPSO), adapted
imperialist competitive algorithm (AICA) and adapted invasive
weed optimization (AIWO) are used in this investigation.
Comprehensive calibrations of different parameters’ values
are performed. For this purpose, response surface method is
employed to select the optimum parameters’ values with the
least possible number of experiments. The performances of the
algorithms are studied in terms of relative percentage
deviation of make-span. The results of the computational
experiments confirm superiority of AIWO to the other
algorithms.

Key Words: no-wait, flexible flow shop, rework,
sequence dependent setup times, ICA, IWO

1.INTRODUCTION

Manufacturing systems involving multiple production lines
with different machines are more complicated. The clue of
mentioned complexity can be found in resource management
process as well. One of the imperatively important technique
to improve the productivity, resource utilization, profitability
of the production lines and keeping the competitively in
rapidly changing marketplace is scheduling and sequencing.
Scheduling and sequencing are widely used techniques in
different parts of a manufacturing systems from designing
the product flow and processing orders in a manufacturing
facility to modelling queues in service industries [1-3].

No-wait scheduling systems have recently been paid more

attention by the researchers among the scheduling problems,
in which the operations of a job have to be processed from
start to end without interruptions in the production line or
between them. Lack of the intermediate buffers and the
nature of the production method are two most important
reasons for designing a no-wait manufacturing system.
Nowadays, some sort of the industries uses the no-wait
production method such as: production of steel, plastics,
aluminum products [4], pharmaceutical processing [5],
chemical processing [6], food processing [7], and concrete
ware production [8].

Reddi and Ramamurthy (1972) was the first paper in
which the flow shop scheduling with no-wait was studied
with make-span performance. To solve this problem, they
proposed a heuristic algorithm. Although the performance of
the presented approach was not investigated in detail, this
can be seen as a milestone in this area as they have proposed
the first heuristic algorithm for the problem [8]. Travelling
salesman problem (TSP) was utilized by Gilmore and Gomory
(1964) to analyze a two stage single processor no-wait flow
shop problem, in which an optimal solution was reported due
to a TSP based branch and bound algorithm. The time
complexity of the proposed algorithm was O(n2) [9]. Another
study in no-wait flow shop scheduling problem with make-
span performance was done by Rajendran (1994). In this
study a heuristic algorithm was suggested based on a
preference relation and job insertion. This algorithm
outperformed the previously presented algorithms [6].

Another heuristic algorithm called Least Deviation (LD)

was presented by Zhixin et al. (2003) for a two-stage-no-wait
hybrid flow shop scheduling in which there is a machine in
each stage. Lower time complexity makes this algorithm one
of the favorable in the associated applications [10]. Later, a
novel heuristic algorithm known as Minimum Deviation
Algorithm (MDA) proposed to minimize the make-span of a
two-stage flexible flow shop with no-wait presented by Xie et
al. (2004) [2].

 Xie and Wang (2005) generalizes the two-stage flexible

flow shop scheduling problem by considering availability
constraints. The complexity and the approximations of the
problem have been studied in this work, but the provided
results indicate that the problems have been studied are
more difficult to approximate than the cases without
availability constraints [11]. Another study of these area have
been completed by Huang et al. (2009). They propose an
integer programming model and Ant Colony Optimization
approach to solve a no-wait two stage flexible flow shop with
setup time and minimum total completion time performance
measure. They claim that the performance of the ACO is much
better than the IP model in terms of running time and quality
of the final solution [12].

A no-wait flexible flow line scheduling problem with time

windows and job rejection has been presented by Jolai et al.
(2009) to maximize the overall profit. Their work is a
production extension and delivery scheduling problem with
time windows. To solve their model, a MILP model has been
presented and solved by LINGO. To speed up the

Ehsan Shalchi

Space Thrusters Research Institute, Iranian Space Research Center, Tabriz, Iran

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1160

performance of the algorithm they used GA and Tabu search
technique. Comparing the results proves that GA works
better than others [13].

Two classes of no-wait flexible flow shop scheduling

problem that are commonly used in automated
manufacturing industry are adding: i) sequence-dependent
setup times (SDST) [14] and, ii) rework for jobs in all stages.
After completing an operation in a step, to proceed to the
next step some types of sequence dependent setup (e.g.
changing tools or adding some new devices) are needed. But,
generally setting up a machine is one of the routine actions
that might easily consume more than 20% of machine
availability if it is mismanaged [15]. An important
classification for sequence dependent setup time is ASDST
and NSDST, which are anticipatory and non-anticipatory
dependent setup time, respectively. ASDST refers to a setup
that can be done even if the job is not available yet to be
processed, on the other hand, NSDST is the setup that can be
started if both the job and machine are available [16]. Second
group of the no-wait flexible flow shop scheduling problem
mentioned in the beginning of this paragraph was rework for
jobs in all stages. Rework is transformation of rejected
products into the re-usable products [17].

Shafaei et al. (2011) investigated the no-wait two stage

flexible flow shop with a minimizing mean flow time
performance measure. They developed six meta-heuristic
algorithms to solve the problem [18]. Moradinasab et al.
(2012) consider a no-wait two-stage flexible flow shop
scheduling problem by considering unit setup times and
rework probability for jobs after second stage and solved this
problem with ICA and DPSO [19]. Moradinasab et al. (2013)
studied a no-wait two-stage flexible flow shop scheduling
problem with setup times aiming to minimize the total
completion time. They used an adaptive imperialist
competitive algorithm (AICA) and genetic algorithm (GA) to
solve this problem and the performance of their proposed
AICA and GA algorithms were tested by comparing with ant
colony optimization, known as an effective algorithm in the
literature [20].

 In this study a no-wait two stage flexible flow shop

scheduling problem with considering two realistic
assumptions including sequence dependent setup times and
rework probability of jobs is solved using three meta-
heuristics algorithms namely discrete particle swarm
optimization (DPSO), adapted imperialist competitive
algorithm (AICA) and adapted invasive weed optimization
(AIWO). The aim is to find an effective algorithm with
minimum maximum completion time. Because to achieve a
global optimal solution and guarantee the maximum amount
of overall profit in each system, all these aspects should be
considered in a single model [21, 22].

The rest of the article is formed as follows: In Section 2,

the problem is described using a numerical example.
Structures of the proposed algorithms are presented in

Section 3. Parameters calibration of the suggested algorithm
is presented in Section 4. In Section 5, a comparative analogy
among the proposed algorithms is presented. Finally, Section
6 concludes the paper and proposes some directions for
future works.

2. PROBLEM DEFINITION

The no-wait two stage flexible flow shop scheduling problem
(NWTSFFSSP) is a typical scheduling problem with strong
engineering background which can be described as follows:
In a NWTSFFSSP, each of n jobs consists of two operations
owning a predetermined processing time P(i, j) of stage i on
job j and setup times S (j,k) between job j and job k , each of n
jobs will be sequentially processed in stage 1, 2 respectively.
At the same time, a NWTSFFSSP must meet some constraints
as follows:

 The processing of each job has to be continuous.

 That is, once a job is started on the first machine, it must
be processed through all machines without any
preemption and interruption.

 Each machine can handle no more than one job at a
time.

 Each job has to visit each machine exactly once.

 The release time of all jobs is zero. It means all jobs can
be processed at the time 0.

 The set-up time of each machine is considered sequence
dependent setup times S (j, k) between Job j and Job k.

 For both operations of each job after processing, an
inspection is considered, inspection time included to
processing time in both stages.

 After inspection, with predetermined probability (pre-
work) each job it may be needed to reworking
procedure.

 The problem is to find a sequence that the maximum
completion time is minimized. The problem is shown
by

2 1 2 max(,) | no-wait, sdst,rework | F m m C .

The no-wait two stage flexible flow shop problems are

NP-hard in the strong sense (23). So, all exact approaches for
even simple problems will most likely have running times
that increase exponentially with the problem Size. In this
paper three meta-heuristic algorithms are proposed to the
problem described above. The frameworks of these
algorithms are explained in the next section.

3. Proposed algorithms

3.1 Adapted imperialist competitive algorithm

Atashpaz-Gargari and Lucas (2007) illustrated the
imperialist competitive algorithm (ICA)[1]. ICA has been

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1161

widely applied for many non-polynomial hard optimization
problems such as flow shop scheduling. Shokrollahpour et al.
(2010) applied this method for solving the two-stage
assembly flow shop scheduling problem with minimization of
weighted sum of make-span and mean completion time as the
objective. They calibrate the parameters of this algorithm
using the Taguchi method. The results show satisfactory
performance of the proposed algorithm [2].

ICA is originated similar to other evolutionary algorithms

using an initial population and any individual of the
population is named a country. Countries are divided in two
groups: imperialists and colonies. Some of the best countries
(countries with the least cost for minimization problems and
with high cost for maximization problems) are chosen to be
the imperialist countries and the rest (i.e. colonies) are
divided among the mentioned imperialists based on their
power. The power of each country is calculated based on the
objective function. A set of one imperialist and their colonies
forms one empire. The total power of an empire is equal to
the power of the imperialist country plus a percentage of
mean power of its colonies. After forming initial empires, the
competition starts, the colonies in each of empires start
moving toward their imperialist country, and the imperialists
attempt to achieve more colonies. Hence during the
competition, the weak imperialist will be collapsed. At the
end just one imperialist will remain. The framework of the
proposed adapted imperialist competitive algorithm (AICA)
is described as follow:

3.1.1 Generating initial empires

Each solution in AICA is in a form of an array. Each array

consists of variable values to be optimized. In GA
terminology, this array is called “chromosome,” but here, we
use the term “country”. In an N dimensional optimization
problem, a country is a 1×N array. This array is defined by:

1 2 3[, , ,...,]Ncountry p p p p (1)

Where Pi is the variable to be optimized. Each variable in

a country denotes a socio-political characteristic of a country.
From this point of view, all the algorithm does is to search for
the best country that is the country with the best combination
of socio-political characteristics such as culture, language,
and economical policy [1].

In the AICA each solution (country) is a 1×N array of

integer variables that N represents the number of jobs. The
array of the country represents a sequence of jobs to be
assigned to earliest available machines in both stages. The
structure of one solution for a seven-job problem is shown in
Figure 1.

6 5 7 2 1 3 4

Fig – 1: Structure for a seven-job problem in HICA

 The cost of a country is calculated using a cost function f at

The algorithm starts with initial countries that are

generated randomly by a number of population size
(PopSize) and the most powerful countries (countries with
minimum cost) are selected as the imperialists by a number
of N-imp. The remaining countries are colonies each of which
belongs to an empire. The colonies are distributed among
imperialists based on imperialist’s power. For calculating the
imperialists power, the normalized cost of an imperialist is
applied based on follow definition:

(3)

normalized cost which is equal to the deviation of the
maximum total completion time from the nth imperialist cost.
The power of each imperialist is calculated according to
Equation 4:

Having obtained the imperialist power, the colonies are

distributed among the imperialist accordingly. In addition,
the initial number of colonies of an imperialist is calculated as
follow:

imperialist. Imperialist with the bigger power has a greater
number of colonies while imperialist with weaker power has
less.

3.1.2 Updating the colonies (assimilating)

Colonies start improving their power by capturing more

Imperialist countries. Some part of a colony’s structure will
be similar to the empire’s structure as it is created from the
nature of this movement. Figure 2 illustrates the imperialist’s
and colony’s arrays. In the AICA, the percent of job numbers
from colony’s array are chosen to be same the imperialist’s
array. For this purpose, a new array with the cells value equal
to one and zero is randomly generated (Figure 3). Noted this,
the number of the ones are equal to percent of jobs that have
the positions equal to that of the imperialist array and named

imperialist and colN is the number of all colonies. We

randomly select nNC of colonies and designate them for each

Where, nNC is the initial number of colonies of nth

 .n n colNC round P N (5)

 (4)



C



C
p

i

N

i

n
n

imp

1

Where, nc is the cost of nth imperialist and nC is its

  maxn i i nC c c

  (2) 1 2() (, ,...,)i i i i iNc f country f p p p

the variables 1 2(, ,...,)NP P P as follow:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1162

as Prct-Assimilate. Then the subsequent jobs are determined
based on the orders defined in the colonies. The resulting job
sequence is shown in Figure 4.

Imperialist 6 5 7 2 1 3 4

Colony 4 3 1 6 7 5 2

Fig - 2: Imperialist’s and colony’s arrays

0 1 1 0 0 0 0

Fig - 3: New array

2 5 7 4 3 1 6

Fig - 4: Assimilated colony

3.1.3 Exchanging positions of the imperialist and
a colony

A colony might reach to a position with lower cost than
the imperialist when colony moved toward the imperialist. In
these situations, the position of the imperialist and the colony
is swapped as showed in Figure 5a. Afterward the algorithm
will continue and the colonies will be moved toward
imperialist in its new position. The resulting empire, after
swapping the position of the imperialist and the colony, is
depicted in Figure 5b.

(a) (b)

Fig - 5: Exchanging positions of the imperialist and a
colony

3.1.4 Total power of an empire

Total power of an empire is mainly affected by the power
of the imperialist country, but the power of the colonies of an
empire has an indigent effect on the total power of that
empire. Therefore, the equation of the total cost is defined as
follow:

cos ()

{cos ()}
n n

n

TC t imperialist

mean t colonies of empire

 

 (6)

Where nTC is the total cost of the nth empire and zeta

() is a positive number which is considered to be less than

1. The total power of the empire to be determined by just the

imperialist when the value of  is small. The role of the

colonies, which determines the total power of an empire,
becomes more important as the value of  increases.

3.1.5 Imperialistic competition

All empires attempt to take the possess and control of

colonies of other empires. In the imperialistic competition the
power of weaker emprises will gradually reduce and the
power of more powerful ones will rise. In other words,
picking some (usually one) of the weakest colonies of the
weakest empire and making a competition among all empires
to possess these colonies are the imperialistic competition. In
this competition, the most powerful empires will not
definitely possess these colonies, but these empires will be
more likely to possess them. This competition is modelled by
picking one of the weakest colonies from the weakest empire.
Then in order to calculate the possession probability of each
empire, first the normalized total cost is calculated as follows:

 maxn n iNTC TC TC  (7)

Where, nTC is the normalized total cost of nth empire

and nTC is the total cost of nth empire. Having normalized

the total cost, the possession probability of each empire is
calculated as below:

1

imp

n
Pn N

ii

NTC
p

NTC






(8)

We use Roulette wheel method for assigning the
mentioned colony to the empires.

3.1.6 Revolution

In each iteration, for every imperialist two positions of

imperialist's array are chosen and these positions are
exchanged together and new imperialist is replaced with the
weakest imperialist colony’s. These processes are repeated
by a percentage of jobs for each imperialist named as Prct-
Imp -R. Furthermore, some of the colonies are selected and
then two positions of the colony's array are chosen and these
positions are exchanged. These processes are repeated for a
percentage of jobs for each colony named as Prct- Col -R. The
replacement ratio is identified as the revolution rate and
named as P-R.

3.1.7 Eliminating the powerless empires

Powerless empires will collapse and their colonies will be

distributed among other empires in the imperialistic
competition. In this paper, when an empire loses all of its
colonies, we consider it as a collapsed empire.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1163

3.1.8 Global war

After preceding a number of iterations, a global war

occurs, named as I-Global-War. Then new countries equal to
the number of population are produced. This is followed by
merging new countries with the old population and sorting
the countries based on their accenting cost functions. Finally,
from the sorted countries, a number of countries equal to the
old population are selected. This process is repeated a
number of times known as N-Global-War.

3.1.9 Stopping criteria

In this paper stopping criteria or end of imperialistic

competition is considered when there is only one empire for
all of the countries.

3.2 Adapted invasive weed optimization

The invasive weed optimization (IWO) is a numerical

stochastic search algorithm that is proposed by Mehrabian
and Lucas (2006) [3]. IWO mimics natural behaviour of
weeds in colonizing and finding suitable place for growth and
reproduction. IWO has been widely applied for a number of
optimization problems. Karimkashi and Kishk (2010) applied
IWO to the array antenna synthesis problems. The results
showed that IWO outperforms the particle swarm
optimization (i.e. PSO)[4]. Furthermore, Ghalenoei and
Hajimirsadeghi (2009) proposed discrete invasive weed
optimization (DIWO) algorithm and compared its
performance with five other evolutionary algorithms in time
cost trade-off (TCT) problem [5]. The result revealed that
DIWO outperforms the other algorithms. Such superiority
encouraged the authors to apply an adapted version of DIWO
to a no-wait two stage flexible flow shop scheduling problem
with sequence dependent setup times and probable reworks.
The framework of the proposed algorithm namely ‘adapted
invasive weed optimization’ (AIWO) algorithm is as follows:

3.2.1 Initialize a population

A limited number of weeds, called PopSize, are randomly

created and considered as initial population. The weed
structure is similar to the country structure defined in AICA
that is shown in Figure 1. Fitness value of each weed is
calculated as its objective function as soon as it is generated.
In this study, the fitness function for a weed is defined as the
minimization of make-span.

3.2.2 Reproduction

Every seed grows to become new plant (Weed) then

these weeds are allowed to produce other seeds depending
on their fitness function. The weed with minimum fitness
function will produce maximum possible seed (Smax).
Likewise, the weed with maximum fitness function will
produce minimum possible seed (Smin). The number of seeds
associated with each weed is produced depending on the

value of the fitness function and is generated using a linear
function varying in a range between Smin and Smax.

In this step seeds for each weed are produced using a

neighbourhood definition applied in Simulated Annealing
(SA). In other word the seeds around of each weed are
produced using one of the three policies namely “swap,
reversion and insertion”.

To perform the seed generation around the given weed,

assume two jobs of given weed are elected randomly. Finally,
among three policies including swap, reversion and insertion,
one of them is selected, randomly. The structures of these
operators are described at below:

 Swap: the positions of selected jobs are exchanged.

 Reversion: In this policy besides conducting swap, the
jobs located in between the swapped jobs are
reversed, too.

 Insertion: In this case the job in the second position is
located immediate after the job in the first location
and the other jobs are shifted right hand side
accordingly.

3.2.3 Spatial distribution

The produced seeds in the previous step are distributed

randomly in the problem space. For to discrete the solution
space of problem, in this paper instead of using the normal
distribution to generate the seeds in around of each weed,
neighborhood concept is applied. Therefore, at first beyond
neighborhoods is examined and with increasing the
iterations, nearer neighborhoods is checked. and are the
most far and nearest neighborhoods of the problem,
respectively. The value of is equal to the percent of job
numbers that is obtained using Equation 9 as bellow:

max of jobs NE number  (9)

The number of neighborhood (,iter Weed

NEN) for a particular

iteration for each weed is calculated using Equation 10:

,

max
min max min min

max

, ()

iter Weed

NE

pow

N Discret Uniform

iter iter
NE round NE NE NE

iter



   
    

     

 (10)

 Where maxiter is the maximum number of iteration

(iter) is the current iteration and pow is a fixed number.

3.2.4 Competitive exclusion

In each iteration, assume that all of the seeds that are

produced are created new population. Therefore, the new
population and previous population are merged together

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1164

then among this population the weeds or seeds with
minimum fitness function are selected by number of
population size. Finally, selected population is the final
population that is used in next iteration.

3.2.5 Stopping criteria

The processes of weed generating are stopped when a

fixed number of generations are satisfied that is called MaxIt.

1-Initialization a population

 1-1-Set Parameters (MaxIt ,PopSize,  , Smax, Pow)

seeds with the size of the PopSize as new population

6- Stop if stopping criteria is met, otherwise go to step 3.

3.3 Discrete particle swarm optimization

Particle swarm optimization (PSO) is a population based

stochastic optimization technique which is developed by
Eberhart and Kennedy (1997) (29). PSO is inspired by the
behavior of bird flocking and fish schooling.

Recently, PSO algorithm and a discrete particle swarm

optimization (DPSO) algorithm have shown a wide
application in optimization problems. Pan et al. (2008)
applied DPSO algorithm to solve the no-wait flow shop
scheduling problem with both make-span and total flow time
criteria [30-40]. The framework of the adapted version of
discrete particle swarm optimization (DPSO) is as follows:

3-3-1- Initialize swarm

In DPSO, the potential solutions are called particles.

Initial population of particle is randomly generated by a
number of population size (PopSize) and dispread randomly
over the problem space. The representation of particle is
similar to country representation that is shown in Figure 1.
Also, fitness value of each particle is evaluated by objective
function when it is generated. In this study, the fitness
function for the particle is defined as the minimization of
make-span.

3.3.2 Individual and the global best

In the end of each iteration, the particle best solution and

the global best solution are determined. The best solution for

each particle over the iterations to the presented iteration is
determined as particle best solution and the best solution for
all the particles over the iterations to the presented iteration
is determined as global best solution.

3.3.3 Update of the particle’s position

Each particle moves according to the pervious velocity of

particle and the both distance between the current position
of particle with the global best solution and current position
of particle with particle best solution. The two major targets
for particles in DPSO are movement toward the global best
solution and particle best solution.

Therefore, in each iteration the position of each particle is

updated three times. First position update is done by its
current position and particle best solution. For the first
position updated, first a new array is randomly generated in a
range between one and zero with size equal to job number.
The number of the ones is equal to percent of job numbers
and this is shown by P-BestPosition. For every position in the
new array that the position value’s is one, the same position
value’s of the particle best solution’s array is inserted in the
first position updated. Afterword, the other works, not assign
to first position updated, in the same order of the current
position’s array is chosen to assign the first position updated
array. The second position updated is done by its first
position update and global best solution similar to the first
position updated. Noted this, the number of the ones are
equal to the percent of job numbers and this is shown by G-
BestPosition.

Finally, the last position updated is done according to the

previous velocity, for this target the final position updated is
done by generation new particle at the neighbourhood of the
second position updated. New particle is produced by swap
or insertion operator on the second position updated. These
operators for generating new particle are repeated by
percent of job numbers that is shown by P-prcnt. The new
particle is the final position updated.

3.3.4 Stopping criteria

When a fixed number of generations are satisfied that is

called Max-It, the processes of searching are stopped.

1-Initialization a population

1-1-Set Parameters (MaxIt, PopSize, P-BestPosition,
G-BestPosition, P-prcnt)

1-2-Generating initial particles (Randomly)

2-Evaluate fitness of each particle

3- Determinate the global best solution and the particle best
solution

 1-2-Generate initial weeds (Randomly)

2-Evaluate fitness of each weed

3- Reproduction

 3-1-determine the number of seeds for each weed

 3-2-produce the seeds for weeds by

4--merge the population of seeds and weeds with together

5--Sort merged population and choice the first weeds or

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1165

4- Update the position of each particle by pervious velocity of
particle, current position of particle, the global best solution
and particle best solution.

5-Stop if stopping criteria is met, otherwise go to step 3.

4. Computational experiments

4.1 Data generation

The data required for this problem consist of number of

jobs, number of machines in each stage, processing time in
both stages, sequence dependent setup times in both stages,
rework probability for both stages and rework times in both
stages. Number of jobs and number of machines generated
for the test problems are shown in Table 1. The processing
times and sequence dependent setup times are generated
using a uniform distribution ranging [1, 30] in both stages.
Furthermore, rework probability for each job is generated

using an exponential distribution ()e   with the mean equal

to 0.05 (i.e. 20)  . Also rework times in both stages are

generated based on Equation 11:

,rework time = (unif(0.3,0.6)×p)i jround (11)

Table – 1: Size of the generated problems

No. Jobs
small 5 10 15 20 25

large 40 80 120 160 200

No.
Machines
(in both
stages)

small
M1=2
M2=3

M1=2 M2=2
M1=3
M2=2

large
M1=16,
M2=20

M1=20
M2=20

M1=24
M2=20

4.2 Parameter setting

In this section, for optimizing the behavior of the

proposed algorithms, appropriate tuning of their parameters
has been carried out. For this purpose, response surface
methodology (RSM) is employed. RSM is defined as a
collection of mathematical and statistical method-based
experiential, which can be used to optimize processes.
Regression equation analysis is used to evaluate the response
surface model. First of all, parameters of each algorithm that
statistically have significant impact on the algorithms are
recognized. To identify significant parameters, two levels for
each parameter are considered. Each factor is measured at
two levels, which can be coded as −1when the factor is at its
low level (L) and+1 when the factor is at its high level (H).
The coded variable can be defined as follows:

0-
 i

i

X X
x

x




(12)

Where
iX and

ix are the actual value and codified value,

respectively,
0X is the value of

iX at the center point, and

x is the step change value (Myers 2003), The levels and

tuned value for each factor of each algorithm is provided in
Table 2. It is noticeable that the values of

minS and
minNE are

equal to one.

Table -2: Tuned parameters of the algorithms

4.3. Experimental results

In this section, the performances of the proposed

algorithms are compared with ACO which was proposed by
Huang et al. (2009) [6] and GA applied by Jolai et al.
(2009)[7]. The purpose of this paper is to find a sequence
which minimizes maximum completion time. In order to
conduct the experiment, algorithms are coded in MATLAB
2009b language and run on a PC with 2.66 GHz and 4GB RAM
memory computer.

After calculation of the objective function of the proposed

algorithms, the best solution obtained for each test problems,

named as solBest , is calculated. Relative percentage deviation

(RPD) is obtained using Equation 13.

lg
100

sol sol

sol

A Best
RPD

Best


  (13)

Where lgsolA is the objective value obtained for a given

algorithm and test problem. It is clear that lower values of
RPD are preferred. Also, average relative percentage

deviation ()RPD is defined according to Equation 14.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1166

.

1
.

No Run

i

RPD

RPD
No Run




 (14)

The performance of the proposed algorithms was

examined by solving 30 different problems in two scales (15
problems in small scale and 15 problems in large scale). The
problems are replicated thirty times for each combination
(i.e. in total 30×30×5 times are implemented). The
comparative results in terms of RPD are shown in Tables 3
and 7 for small and large scales problems, respectively. The
results show that for in all cases, AIWO obtained better
performance than the other algorithms.

Table -3: Results in terms of RPD (small scale problems)

To validate the statistical significance of the observed

differences in the solution quality, % 95 confidence interval
for RPD performance measure in both small scale and large
scale were applied. These show that AIWO statistically
outperform the other algorithms in both scales. Furthermore,
AIWO and AICA obtained better results compared with ACO
and GA. In addition, the influences of the number of jobs over
the different algorithms are studied based on % 95
confidence interval. The results demonstrate that the change
in the number of jobs has no impact on AIWO performance
but for the other algorithms it could be seen as an
asymmetric trend. In order to evaluate the impact of machine

balancing on the algorithms performance, RPD of
algorithms are performed. This shows that machine
balancing also has no impact on AIWO performance whereas
for AICA.

Table -4: Results in terms of RPD (large scale problems)

3. CONCLUSIONS

In this paper, a couple of novel metaheuristics (i.e. AICA and
AIWO) and a popular metaheuristic (i.e. DPSO) were
proposed for solving no-wait two stage flexible flow shop
scheduling problems with probable rework and sequence
dependent setup times to minimizing make-span. The
performance of the proposed algorithms was studied in
terms of relative percentage deviation performance measure
in both small and large scale problems. Results in both scales
indicate that AIWO statistically outperforms the other
algorithms. Furthermore, interaction between the number of
jobs and algorithm shows that AIWO in all of experimental
cases dominates the other algorithm. Sensitive analysis was
performed to study the interaction between machine
balancing and the proposed algorithms performance. The
results indicated that machine balancing has no impact on
AIWO performance whereas for AICA. As a further work, it is
suggested that new assumptions such as machines with
different speeds, released time and availability constraints to
be considered.

ACKNOWLEDGEMENT

We thank Hassan Jafarzadeh for his assistance and
comments that greatly improved the manuscript.

REFERENCES

[1] Atashpaz-Gargari, E., & Lucas, C. (2007, September).
Imperialist competitive algorithm: an algorithm for
optimization inspired by imperialistic competition.
In Evolutionary computation, 2007. CEC 2007. IEEE
Congress on (pp. 4661-4667). IEEE.

[2] Shokrollahpour, E., Zandieh, M., & Dorri, B. (2011). A
novel imperialist competitive algorithm for bi-
criteria scheduling of the assembly flowshop

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1167

problem. International Journal of Production
Research, 49(11), 3087-3103.

[3] Mehrabian, A. R., & Lucas, C. (2006). A novel
numerical optimization algorithm inspired from
weed colonization. Ecological informatics, 1(4),
355-366.

[4] Karimkashi, S., & Kishk, A. A. (2010). Invasive weed
optimization and its features in electromagnetics.
IEEE transactions on antennas and propagation,
58(4), 1269-1278.

[5] Ghalenoei, M. R., Hajimirsadeghi, H., & Lucas, C.
(2009, December). Discrete invasive weed
optimization algorithm: application to cooperative
multiple task assignment of UAVs. In Decision and
Control, 2009 held jointly with the 2009 28th
Chinese Control Conference. CDC/CCC 2009.
Proceedings of the 48th IEEE Conference on (pp.
1665-1670). IEEE.

[6] Jafarzadeh, H., Moradinasab, N., & Gerami, A. (2017).
Solving no-wait two-stage flexible flow shop
scheduling problem with unrelated parallel
machines and rework time by the adjusted discrete
Multi Objective Invasive Weed Optimization and
fuzzy dominance approach. Journal of Industrial
Engineering and Management, 10(5), 887.

[7] Jolai, F., Sheikh, S., Rabbani, M., & Karimi, B. (2009).
A genetic algorithm for solving no-wait flexible flow
lines with due window and job rejection. The
International Journal of Advanced Manufacturing
Technology, 42(5-6), 523.

[8] Aldowaisan, T., & Allahverdi, A. (2004). New
heuristics for m-machine no-wait flowshop to
minimize total completion time. Omega, 32(5), 345-
352.

[9] Flapper, S. D. P., & Teunter, R. H. (2004). Logistic
planning of rework with deteriorating work-in-
process. International journal of production
economics, 88(1), 51-59.

[10] Jafarzadeh, H., Moradinasab, N., & Elyasi, M.
(2017). An Enhanced Genetic Algorithm for the
Generalized Traveling Salesman Problem.
Engineering, Technology & Applied Science
Research, 7(6), 2260-2265.

[11] Grabowski, J., & Pempera, J. (2000). Sequencing of
jobs in some production system. European Journal
of Operational Research, 125(3), 535-550.

[12] Hall, N. G., & Sriskandarajah, C. (1996). A survey of
machine scheduling problems with blocking and no-
wait in process. Operations research, 44(3), 510-
525.

[13] Hasani, R., Jafarzadeh, H., & Khoshalhan, F. (2013).
A new method for supply chain coordination with
credit option contract and customers’ backordered
demand. Uncertain Supply Chain Management, 1(4),
207-218.

[14] Jafarzadeh, H., Gholami, S., & Bashirzadeh, R.
(2014). A new effective algorithm for on-line robot
motion planning. Decision Science Letters, 3(1),
121-130.

[15] Kennedy, J., & Eberhart, R. C. (1997, October). A
discrete binary version of the particle swarm
algorithm. In Systems, Man, and Cybernetics, 1997.
Computational Cybernetics and Simulation., 1997
IEEE International Conference on (Vol. 5, pp. 4104-
4108). IEEE.

[16] Liu, B., Wang, L., & Jin, Y. H. (2007). An effective
hybrid particle swarm optimization for no-wait flow
shop scheduling. The International Journal of
Advanced Manufacturing Technology, 31(9-10),
1001-1011.

[17] Liu, Z., Xie, J., Li, J., & Dong, J. (2003). A heuristic for
two-stage no-wait hybrid flowshop scheduling with
a single machine in either stage. Tsinghua Science
and Technology, 8(1), 43-48.

[18] Moradinasab, N., Shafaei, R., Rabiee, M., &
Ramezani, P. (2013). No-wait two stage hybrid flow
shop scheduling with genetic and adaptive
imperialist competitive algorithms. Journal of
Experimental & Theoretical Artificial Intelligence,
25(2), 207-225.

[19] Naderi, B., Zandieh, M., & Shirazi, M. A. H. A. (2009).
Modeling and scheduling a case of flexible
flowshops: Total weighted tardiness minimization.
Computers & Industrial Engineering, 57(4), 1258-
1267.

[20] Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2008). A
discrete particle swarm optimization algorithm for
the no-wait flowshop scheduling problem.
Computers & Operations Research, 35(9), 2807-
2839.

[21] Raaymakers, W. H., & Hoogeveen, J. A. (2000).
Scheduling multipurpose batch process industries
with no-wait restrictions by simulated annealing.
European Journal of Operational Research, 126(1),
131-151.

[22] Rajendran, C. (1994). A no-wait flowshop
scheduling heuristic to minimize makespan. Journal
of the Operational Research Society, 45(4), 472-478.

[23] Shafaei, R., Moradinasab, N., & Rabiee, M. (2011).
Efficient meta heuristic algorithms to minimize

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1168

mean flow time in no-wait two stage flow shops
with parallel and identical machines. International
Journal of Management Science and Engineering
Management, 6(6), 421-430.

[24] Shafaei, R., Rabiee, M., & Mazinani, M. (2012).
Minimization of maximum tardiness in a no-wait
two stage flexible flow shop. International Journal of
Artificial Intelligence™, 8(S12), 166-181.

[25] Sriskandarajah, C., & Ladet, P. (1986). Some no-
wait shops scheduling problems: complexity aspect.
European journal of operational research, 24(3),
424-438.

[26] Jafarzadeh, H., Moradinasab, N., Eskandari, H., &
Gholami, S. (2017). Genetic Algorithm for A Generic
Model of Reverse Logistics Network. International
Journal of Engineering Innovation & Research, 6(4),
174-178.

[27] Weiss, G. (1995). Scheduling: Theory, Algorithms,
and Systems.

[28] Xie, J., & Wang, X. (2005). Complexity and
algorithms for two-stage flexible flowshop
scheduling with availability constraints. Computers
& Mathematics with Applications, 50(10-12), 1629-
1638.

[29] Xie, J., Xing, W., Liu, Z., & Dong, J. (2004). Minimum
deviation algorithm for two-stageno-wait flowshops
with parallel machines. Computers & Mathematics
with Applications, 47(12), 1857-1863.

[30] Zandieh, M., Ghomi, S. F., & Husseini, S. M. (2006).
An immune algorithm approach to hybrid flow
shops scheduling with sequence-dependent setup
times. Applied Mathematics and Computation,
180(1), 111-127.

[31] Zeyghami, S., Babu, N., & Dong, H. (2016). Cicada
(Tibicen linnei) steers by force vectoring.
Theoretical and Applied Mechanics Letters, 6(2),
107-111.

[32] Zeyghami, S., & Dong, H. (2015). Coupling of the
wings and the body dynamics enhances damselfly
maneuverability. arXiv preprint arXiv:1502.06835.

[33] Bode-Oke, A. T., Zeyghami, S., & Dong, H. (2017).
Aerodynamics and flow features of a damselfly in
takeoff flight. Bioinspiration & biomimetics, 12(5),
056006.

[34] Zeyghami, S., Bode-Oke, A. T., & Dong, H. (2017).
Quantification of wing and body kinematics in
connection to torque generation during damselfly
yaw turn. Science China Physics, Mechanics &
Astronomy, 60(1), 014711.

[35] Joghataie, A., & Dizaji, M. S. (2009, July). Nonlinear
analysis of concrete gravity dams by neural
networks. In Proceedings of the World Congress on
Engineering (Vol. 2).

[36] Soltani, R. (2017). Modeling integrated flow shop
Scheduling problem and air transportation in
supply chain. International Academic Journal of
Science and Engineering, 4(3), 10-19.

[37] Joghataie, A., & Dizaji, M. S. (2010). Transforming
results from model to prototype of concrete gravity
dams using neural networks. Journal of Engineering
Mechanics, 137(7), 484-496.

[38] Sojoudi, M., & Sojoudi, M. (2017). Designing
Mathematical Modeling of location Network and
Optimal Planning for Supply Chain Demand.
International Academic Journal of Science and
Engineering, 4(3), 75-86.

[39] Sojoudi, M., & Saeedi, H. (2017). The Problem of
Locating-Allocation of Facilities and Central
Warehouse in the Supply Chain with Bernoulli
Demand. International Academic Journal of Science
and Engineering, 4(2), 152-165.

[40] Lashgari Y. (2017). Proposing a hierarchical
approach based on fuzzy logic to choose a
contractor in the bank. International Academic
Journal of Science and Engineering, 4(3), 28-38.

