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Novel heuristics for no-wait two stage multiprocessor flow shop with 
probable rework and sequence dependent setup times 

 

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - This paper presents a number of novel heuristics 
for solving a no-wait two stage multiprocessor flow shop 
scheduling problem. To fill in a segment of gap in real 
scheduling problems, two practical assumptions including 
probable rework and sequence dependent setup times are 
considered this study. A number of evolutionary algorithms 
namely, discrete particle swarm optimization (DPSO), adapted 
imperialist competitive algorithm (AICA) and adapted invasive 
weed optimization (AIWO) are used in this investigation. 
Comprehensive calibrations of different parameters’ values 
are performed. For this purpose, response surface method is 
employed to select the optimum parameters’ values with the 
least possible number of experiments. The performances of the 
algorithms are studied in terms of relative percentage 
deviation of make-span. The results of the computational 
experiments confirm superiority of AIWO to the other 
algorithms. 

 
Key Words:  no-wait, flexible flow shop, rework, 
sequence dependent setup times, ICA, IWO 
 

1.INTRODUCTION 
 
Manufacturing systems involving multiple production lines 
with different machines are more complicated. The clue of 
mentioned complexity can be found in resource management 
process as well. One of the imperatively important technique 
to improve the productivity, resource utilization, profitability 
of the production lines and keeping the competitively in 
rapidly changing marketplace is scheduling and sequencing. 
Scheduling and sequencing are widely used techniques in 
different parts of a manufacturing systems from designing 
the product flow and processing orders in a manufacturing 
facility to modelling queues in service industries [1-3]. 

 
No-wait scheduling systems have recently been paid more 

attention by the researchers among the scheduling problems, 
in which the operations of a job have to be processed from 
start to end without interruptions in the production line or 
between them. Lack of the intermediate buffers and the 
nature of the production method are two most important 
reasons for designing a no-wait manufacturing system. 
Nowadays, some sort of the industries uses the no-wait 
production method such as: production of steel, plastics, 
aluminum products [4], pharmaceutical processing [5], 
chemical processing [6], food processing [7], and concrete 
ware production [8].  

 

Reddi and Ramamurthy (1972) was the first paper in 
which the flow shop scheduling with no-wait was studied 
with make-span performance. To solve this problem, they 
proposed a heuristic algorithm. Although the performance of 
the presented approach was not investigated in detail, this 
can be seen as a milestone in this area as they have proposed 
the first heuristic algorithm for the problem [8]. Travelling 
salesman problem (TSP) was utilized by Gilmore and Gomory 
(1964) to analyze a two stage single processor no-wait flow 
shop problem, in which an optimal solution was reported due 
to a TSP based branch and bound algorithm. The time 
complexity of the proposed algorithm was O(n2) [9]. Another 
study in no-wait flow shop scheduling problem with make-
span performance was done by Rajendran (1994). In this 
study a heuristic algorithm was suggested based on a 
preference relation and job insertion. This algorithm 
outperformed the previously presented algorithms [6].  

 
Another heuristic algorithm called Least Deviation (LD) 

was presented by Zhixin et al. (2003) for a two-stage-no-wait 
hybrid flow shop scheduling in which there is a machine in 
each stage. Lower time complexity makes this algorithm one 
of the favorable in the associated applications [10]. Later, a 
novel heuristic algorithm known as Minimum Deviation 
Algorithm (MDA) proposed to minimize the make-span of a 
two-stage flexible flow shop with no-wait presented by Xie et 
al. (2004) [2].  

 
 Xie and Wang (2005) generalizes the two-stage flexible 

flow shop scheduling problem by considering availability 
constraints. The complexity and the approximations of the 
problem have been studied in this work, but the provided 
results indicate that the problems have been studied are 
more difficult to approximate than the cases without 
availability constraints [11]. Another study of these area have 
been completed by Huang et al. (2009). They propose an 
integer programming model and Ant Colony Optimization 
approach to solve a no-wait two stage flexible flow shop with 
setup time and minimum total completion time performance 
measure. They claim that the performance of the ACO is much 
better than the IP model in terms of running time and quality 
of the final solution [12]. 

 
A no-wait flexible flow line scheduling problem with time 

windows and job rejection has been presented by Jolai et al. 
(2009) to maximize the overall profit. Their work is a 
production extension and delivery scheduling problem with 
time windows. To solve their model, a MILP model has been 
presented and solved by LINGO. To speed up the 
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performance of the algorithm they used GA and Tabu search 
technique. Comparing the results proves that GA works 
better than others [13].  

 
Two classes of no-wait flexible flow shop scheduling 

problem that are commonly used in automated 
manufacturing industry are adding: i) sequence-dependent 
setup times (SDST) [14] and, ii) rework for jobs in all stages. 
After completing an operation in a step, to proceed to the 
next step some types of sequence dependent setup (e.g. 
changing tools or adding some new devices) are needed. But, 
generally setting up a machine is one of the routine actions 
that might easily consume more than 20% of machine 
availability if it is mismanaged [15].  An important 
classification for sequence dependent setup time is ASDST 
and NSDST, which are anticipatory and non-anticipatory 
dependent setup time, respectively. ASDST refers to a setup 
that can be done even if the job is not available yet to be 
processed, on the other hand, NSDST is the setup that can be 
started if both the job and machine are available [16]. Second 
group of the no-wait flexible flow shop scheduling problem 
mentioned in the beginning of this paragraph was rework for 
jobs in all stages. Rework is transformation of rejected 
products into the re-usable products [17].   

 
Shafaei et al. (2011) investigated the no-wait two stage 

flexible flow shop with a minimizing mean flow time 
performance measure. They developed six meta-heuristic 
algorithms to solve the problem [18]. Moradinasab et al. 
(2012) consider a no-wait two-stage flexible flow shop 
scheduling problem by considering unit setup times and 
rework probability for jobs after second stage and solved this 
problem with ICA and DPSO [19]. Moradinasab et al. (2013) 
studied a no-wait two-stage flexible flow shop scheduling 
problem with setup times aiming to minimize the total 
completion time. They used an adaptive imperialist 
competitive algorithm (AICA) and genetic algorithm (GA) to 
solve this problem and the performance of their proposed 
AICA and GA algorithms were tested by comparing with ant 
colony optimization, known as an effective algorithm in the 
literature [20]. 

 
 In this study a no-wait two stage flexible flow shop 

scheduling problem with considering two realistic 
assumptions including sequence dependent setup times and 
rework probability of jobs is solved using three meta-
heuristics algorithms namely discrete particle swarm 
optimization (DPSO), adapted imperialist competitive 
algorithm (AICA) and adapted invasive weed optimization 
(AIWO). The aim is to find an effective algorithm with 
minimum maximum completion time. Because to achieve a 
global optimal solution and guarantee the maximum amount 
of overall profit in each system, all these aspects should be 
considered in a single model [21, 22]. 

 
The rest of the article is formed as follows: In Section 2, 

the problem is described using a numerical example. 
Structures of the proposed algorithms are presented in 

Section 3. Parameters calibration of the suggested algorithm 
is presented in Section 4. In Section 5, a comparative analogy 
among the proposed algorithms is presented. Finally, Section 
6 concludes the paper and proposes some directions for 
future works. 

 

2. PROBLEM DEFINITION 
 
The no-wait two stage flexible flow shop scheduling problem 
(NWTSFFSSP) is a typical scheduling problem with strong 
engineering background which can be described as follows: 
In a NWTSFFSSP, each of n jobs consists of two operations 
owning a predetermined processing time P(i, j) of stage i on 
job j and setup times S (j,k) between job j and job k , each of n 
jobs will be sequentially processed in stage 1, 2 respectively. 
At the same time, a NWTSFFSSP must meet some constraints 
as follows: 
 
 The processing of each job has to be continuous. 

 That is, once a job is started on the first machine, it must 
be processed through all machines without any 
preemption and interruption. 

 Each machine can handle no more than one job at a 
time. 

 Each job has to visit each machine exactly once. 

 The release time of all jobs is zero. It means all jobs can 
be processed at the time 0. 

 The set-up time of each machine is considered sequence 
dependent setup times S (j, k) between Job j and Job k. 

 For both operations of each job after processing, an 
inspection is considered, inspection time included to 
processing time in both stages. 

 After inspection, with predetermined probability (pre-
work) each job it may be needed to reworking 
procedure. 

 The problem is to find a sequence that the maximum 
completion time is minimized. The problem is shown 
by

2 1 2 max( , ) | no-wait, sdst,rework |  F m m C . 

 
The no-wait two stage flexible flow shop problems are 

NP-hard in the strong sense (23). So, all exact approaches for 
even simple problems will most likely have running times 
that increase exponentially with the problem Size. In this 
paper three meta-heuristic algorithms are proposed to the 
problem described above. The frameworks of these 
algorithms are explained in the next section. 

 

3. Proposed algorithms 
 
3.1 Adapted imperialist competitive algorithm 
 

Atashpaz-Gargari and Lucas (2007) illustrated the 
imperialist competitive algorithm (ICA)[1]. ICA has been 
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widely applied for many non-polynomial hard optimization 
problems such as flow shop scheduling. Shokrollahpour et al. 
(2010) applied this method for solving the two-stage 
assembly flow shop scheduling problem with minimization of 
weighted sum of make-span and mean completion time as the 
objective. They calibrate the parameters of this algorithm 
using the Taguchi method. The results show satisfactory 
performance of the proposed algorithm [2]. 

 
ICA is originated similar to other evolutionary algorithms 

using an initial population and any individual of the 
population is named a country. Countries are divided in two 
groups: imperialists and colonies. Some of the best countries 
(countries with the least cost for minimization problems and 
with high cost for maximization problems) are chosen to be 
the imperialist countries and the rest (i.e. colonies) are 
divided among the mentioned imperialists based on their 
power. The power of each country is calculated based on the 
objective function. A set of one imperialist and their colonies 
forms one empire. The total power of an empire is equal to 
the power of the imperialist country plus a percentage of 
mean power of its colonies. After forming initial empires, the 
competition starts, the colonies in each of empires start 
moving toward their imperialist country, and the imperialists 
attempt to achieve more colonies. Hence during the 
competition, the weak imperialist will be collapsed. At the 
end just one imperialist will remain. The framework of the 
proposed adapted imperialist competitive algorithm (AICA) 
is described as follow: 

 

3.1.1 Generating initial empires 
 
Each solution in AICA is in a form of an array. Each array 

consists of variable values to be optimized. In GA 
terminology, this array is called “chromosome,” but here, we 
use the term “country”. In an N dimensional optimization 
problem, a country is a 1×N array. This array is defined by: 

 

1 2 3[ , , ,..., ]Ncountry p p p p                  (1) 

 
Where Pi is the variable to be optimized. Each variable in 

a country denotes a socio-political characteristic of a country. 
From this point of view, all the algorithm does is to search for 
the best country that is the country with the best combination 
of socio-political characteristics such as culture, language, 
and economical policy [1]. 

 
In the AICA each solution (country) is a 1×N array of 

integer variables that N represents the number of jobs. The 
array of the country represents a sequence of jobs to be 
assigned to earliest available machines in both stages. The 
structure of one solution for a seven-job problem is shown in 
Figure 1. 
 

6 5 7 2 1 3 4 

 
Fig – 1: Structure for a seven-job problem in HICA 

 The cost of a country is calculated using a cost function f at 

 

 
The algorithm starts with initial countries that are 

generated randomly by a number of population size 
(PopSize) and the most powerful countries (countries with 
minimum cost) are selected as the imperialists by a number 
of N-imp. The remaining countries are colonies each of which 
belongs to an empire. The colonies are distributed among 
imperialists based on imperialist’s power. For calculating the 
imperialists power, the normalized cost of an imperialist is 
applied based on follow definition:  

 

(3)  

normalized cost which is equal to the deviation of the 
maximum total completion time from the nth imperialist cost.  
The power of each imperialist is calculated according to 
Equation 4: 

 

 
Having obtained the imperialist power, the colonies are 

distributed among the imperialist accordingly. In addition, 
the initial number of colonies of an imperialist is calculated as 
follow: 

 

 

imperialist. Imperialist with the bigger power has a greater 
number of colonies while imperialist with weaker power has 
less. 

 
3.1.2 Updating the colonies (assimilating) 

 
Colonies start improving their power by capturing more 

Imperialist countries. Some part of a colony’s structure will 
be similar to the empire’s structure as it is created from the 
nature of this movement. Figure 2 illustrates the imperialist’s 
and colony’s arrays. In the AICA, the percent of job numbers 
from colony’s array are chosen to be same the imperialist’s 
array. For this purpose, a new array with the cells value equal 
to one and zero is randomly generated (Figure 3). Noted this, 
the number of the ones are equal to percent of jobs that have 
the positions equal to that of the imperialist array and named 

imperialist and colN is the number of all colonies. We 

randomly select nNC of colonies and designate them for each 

Where, nNC  is the initial number of colonies of nth 

 .n n colNC round P N                     (5) 

                 (4) 

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Where, nc is the cost of nth imperialist and nC  is its 

                    maxn i i nC c c

        (2) 1 2( ) ( , ,..., )i i i i iNc f country f p p p

the variables 1 2( , ,..., )NP P P  as follow: 
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as Prct-Assimilate. Then the subsequent jobs are determined 
based on the orders defined in the colonies. The resulting job 
sequence is shown in Figure 4.  

 
Imperialist 6 5 7 2 1 3 4 

Colony 4 3 1 6 7 5 2 
 

 
Fig - 2: Imperialist’s and colony’s arrays 

 
0 1 1 0 0 0 0 

 

 
Fig - 3: New array 

 
2 5 7 4 3 1 6 

 

 
Fig - 4: Assimilated colony 

 

3.1.3 Exchanging positions of the imperialist and 
a colony 
 

A colony might reach to a position with lower cost than 
the imperialist when colony moved toward the imperialist. In 
these situations, the position of the imperialist and the colony 
is swapped as showed in Figure 5a.  Afterward the algorithm 
will continue and the colonies will be moved toward 
imperialist in its new position. The resulting empire, after 
swapping the position of the imperialist and the colony, is 
depicted in Figure 5b. 

  

(a) (b) 
 

Fig - 5: Exchanging positions of the imperialist and a 
colony 

 

3.1.4 Total power of an empire 
 

Total power of an empire is mainly affected by the power 
of the imperialist country, but the power of the colonies of an 
empire has an indigent effect on the total power of that 
empire. Therefore, the equation of the total cost is defined as 
follow: 

 
cos ( )

{cos ( )}
n n

n

TC t imperialist

mean t colonies of empire

 

                      
 (6) 

 

Where nTC is the total cost of the nth empire and zeta 

(  ) is a positive number which is considered to be less than 

1. The total power of the empire to be determined by just the 

imperialist when the value of   is small. The role of the 

colonies, which determines the total power of an empire, 
becomes more important as the value of  increases. 

 

3.1.5 Imperialistic competition 
 
All empires attempt to take the possess and control of 

colonies of other empires. In the imperialistic competition the 
power of weaker emprises will gradually reduce and the 
power of more powerful ones will rise. In other words, 
picking some (usually one) of the weakest colonies of the 
weakest empire and making a competition among all empires 
to possess these colonies are the imperialistic competition. In 
this competition, the most powerful empires will not 
definitely possess these colonies, but these empires will be 
more likely to possess them. This competition is modelled by 
picking one of the weakest colonies from the weakest empire. 
Then in order to calculate the possession probability of each 
empire, first the normalized total cost is calculated as follows: 

 

 maxn n iNTC TC TC                  (7) 

 

Where,  nTC is the normalized total cost of nth empire 

and nTC  is the total cost of nth empire. Having normalized 

the total cost, the possession probability of each empire is 
calculated as below: 

 

1

imp

n
Pn N

ii

NTC
p

NTC





        

(8) 

We use Roulette wheel method for assigning the 
mentioned colony to the empires. 

 

3.1.6 Revolution 
 
In each iteration, for every imperialist two positions of 

imperialist's array are chosen and these positions are 
exchanged together and new imperialist is replaced with the 
weakest imperialist colony’s. These processes are repeated 
by a percentage of jobs for each imperialist named as Prct- 
Imp -R. Furthermore, some of the colonies are selected and 
then two positions of the colony's array are chosen and these 
positions are exchanged. These processes are repeated for a 
percentage of jobs for each colony named as Prct- Col -R. The 
replacement ratio is identified as the revolution rate and 
named as P-R. 

 

3.1.7 Eliminating the powerless empires 
 
Powerless empires will collapse and their colonies will be 

distributed among other empires in the imperialistic 
competition. In this paper, when an empire loses all of its 
colonies, we consider it as a collapsed empire. 
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3.1.8 Global war 
 
After preceding a number of iterations, a global war 

occurs, named as I-Global-War. Then new countries equal to 
the number of population are produced. This is followed by 
merging new countries with the old population and sorting 
the countries based on their accenting cost functions. Finally, 
from the sorted countries, a number of countries equal to the 
old population are selected. This process is repeated a 
number of times known as N-Global-War. 

 

3.1.9 Stopping criteria 
 
In this paper stopping criteria or end of imperialistic 

competition is considered when there is only one empire for 
all of the countries. 

 

3.2 Adapted invasive weed optimization 
 
The invasive weed optimization (IWO) is a numerical 

stochastic search algorithm that is proposed by Mehrabian 
and Lucas (2006) [3]. IWO mimics natural behaviour of 
weeds in colonizing and finding suitable place for growth and 
reproduction. IWO has been widely applied for a number of 
optimization problems. Karimkashi and Kishk (2010) applied 
IWO to the array antenna synthesis problems. The results 
showed that IWO outperforms the particle swarm 
optimization (i.e. PSO)[4]. Furthermore, Ghalenoei and 
Hajimirsadeghi (2009) proposed discrete invasive weed 
optimization (DIWO) algorithm and compared its 
performance with five other evolutionary algorithms in time 
cost trade-off (TCT) problem [5]. The result revealed that 
DIWO outperforms the other algorithms. Such superiority 
encouraged the authors to apply an adapted version of DIWO 
to a no-wait two stage flexible flow shop scheduling problem 
with sequence dependent setup times and probable reworks. 
The framework of the proposed algorithm namely ‘adapted 
invasive weed optimization’ (AIWO) algorithm is as follows: 

 

3.2.1 Initialize a population 
 
A limited number of weeds, called PopSize, are randomly 

created and considered as initial population. The weed 
structure is similar to the country structure defined in AICA 
that is shown in Figure 1. Fitness value of each weed is 
calculated as its objective function as soon as it is generated. 
In this study, the fitness function for a weed is defined as the 
minimization of make-span. 

 

3.2.2 Reproduction 
 
Every seed grows to become new plant (Weed) then 

these weeds are allowed to produce other seeds depending 
on their fitness function.  The weed with minimum fitness 
function will produce maximum possible seed (Smax). 
Likewise, the weed with maximum fitness function will 
produce minimum possible seed (Smin). The number of seeds 
associated with each weed is produced depending on the 

value of the fitness function and is generated using a linear 
function varying in a range between Smin and Smax. 

 
In this step seeds for each weed are produced using a 

neighbourhood definition applied in Simulated Annealing 
(SA). In other word the seeds around of each weed are 
produced using one of the three policies namely “swap, 
reversion and insertion”.   

 
To perform the seed generation around the given weed, 

assume two jobs of given weed are elected randomly. Finally, 
among three policies including swap, reversion and insertion, 
one of them is selected, randomly. The structures of these 
operators are described at below: 

 
 Swap: the positions of selected jobs are exchanged. 

 Reversion: In this policy besides conducting swap, the 
jobs located in between the swapped jobs are 
reversed, too. 

 Insertion: In this case the job in the second position is 
located immediate after the job in the first location 
and the other jobs are shifted right hand side 
accordingly. 
 

3.2.3 Spatial distribution 
 
The produced seeds in the previous step are distributed 

randomly in the problem space.  For to discrete the solution 
space of problem, in this paper instead of using the normal 
distribution to generate the seeds in around of each weed, 
neighborhood concept is applied. Therefore, at first beyond 
neighborhoods is examined and with increasing the 
iterations, nearer neighborhoods is checked.  and are the 
most far and nearest neighborhoods of the problem, 
respectively. The value of is equal to the percent of job 
numbers that is obtained using Equation 9 as bellow: 

 

max  of jobs    NE number   (9) 

 
The number of neighborhood ( ,iter Weed

NEN ) for a particular 

iteration for each weed is calculated using Equation 10: 
 
,

max
min max min min

max

 

, ( )

iter Weed

NE

pow

N Discret Uniform

iter iter
NE round NE NE NE

iter



   
    

     

 (10) 

        

   Where maxiter  is the maximum number of iteration 

( iter ) is the current iteration and pow is a fixed number. 
 

3.2.4 Competitive exclusion 
 
In each iteration, assume that all of the seeds that are 

produced are created new population. Therefore, the new 
population and previous population are merged together 
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then among this population the weeds or seeds with 
minimum fitness function are selected by number of 
population size. Finally, selected population is the final 
population that is used in next iteration. 

 

3.2.5 Stopping criteria 
 
The processes of weed generating are stopped when a 

fixed number of generations are satisfied that is called MaxIt. 
 

1-Initialization a population 

      1-1-Set Parameters (MaxIt ,PopSize,  , Smax, Pow)  

seeds with the size of the PopSize as new population 

6- Stop if stopping criteria is met, otherwise go to step 3. 
 

3.3 Discrete particle swarm optimization 
 
Particle swarm optimization (PSO) is a population based 

stochastic optimization technique which is developed by 
Eberhart and Kennedy (1997) (29). PSO is inspired by the 
behavior of bird flocking and fish schooling. 

 
Recently, PSO algorithm and a discrete particle swarm 

optimization (DPSO) algorithm have shown a wide 
application in optimization problems. Pan et al. (2008) 
applied DPSO algorithm to solve the no-wait flow shop 
scheduling problem with both make-span and total flow time 
criteria [30-40]. The framework of the adapted version of 
discrete particle swarm optimization (DPSO) is as follows: 

 

3-3-1- Initialize swarm 
 
In DPSO, the potential solutions are called particles. 

Initial population of particle is randomly generated by a 
number of population size (PopSize) and dispread randomly 
over the problem space. The representation of particle is 
similar to country representation that is shown in Figure 1. 
Also, fitness value of each particle is evaluated by objective 
function when it is generated. In this study, the fitness 
function for the particle is defined as the minimization of 
make-span. 

 

3.3.2 Individual and the global best 
 
In the end of each iteration, the particle best solution and 

the global best solution are determined. The best solution for 

each particle over the iterations to the presented iteration is 
determined as particle best solution and the best solution for 
all the particles over the iterations to the presented iteration 
is determined as global best solution. 

 

3.3.3 Update of the particle’s position 

 
Each particle moves according to the pervious velocity of 

particle and the both distance between the current position 
of particle with the global best solution and current position 
of particle with particle best solution. The two major targets 
for particles in DPSO are movement toward the global best 
solution and particle best solution. 

 
Therefore, in each iteration the position of each particle is 

updated three times. First position update is done by its 
current position and particle best solution. For the first 
position updated, first a new array is randomly generated in a 
range between one and zero with size equal to job number. 
The number of the ones is equal to percent of job numbers 
and this is shown by P-BestPosition. For every position in the 
new array that the position value’s is one, the same position 
value’s of the particle best solution’s array is inserted in the 
first position updated. Afterword, the other works, not assign 
to first position updated, in the same order of the current 
position’s array is chosen to assign the first position updated 
array. The second position updated is done by its first 
position update and global best solution similar to the first 
position updated. Noted this, the number of the ones are 
equal to the percent of job numbers and this is shown by G-
BestPosition. 

 
Finally, the last position updated is done according to the 

previous velocity, for this target the final position updated is 
done by generation new particle at the neighbourhood of the 
second position updated. New particle is produced by swap 
or insertion operator on the second position updated. These 
operators for generating new particle are repeated by 
percent of job numbers that is shown by P-prcnt. The new 
particle is the final position updated. 
 

3.3.4 Stopping criteria 
 
When a fixed number of generations are satisfied that is 

called Max-It, the processes of searching are stopped. 
 

1-Initialization a population 

1-1-Set Parameters (MaxIt,  PopSize, P-BestPosition, 
G-BestPosition, P-prcnt)  

1-2-Generating initial particles (Randomly) 

2-Evaluate fitness of each particle 

3- Determinate the global best solution and the particle best 
solution 

      1-2-Generate initial weeds (Randomly) 

2-Evaluate fitness of each weed 

3- Reproduction 

      3-1-determine the number of seeds for each weed 

      3-2-produce the seeds for weeds by 

4--merge the population of seeds and weeds with together 

5--Sort merged population and choice the first weeds or 
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4- Update the position of each particle by pervious velocity of 
particle, current position of particle, the global best solution 
and particle best solution. 

5-Stop if stopping criteria is met, otherwise go to step 3. 
 

4. Computational experiments  
 
4.1 Data generation 

 
The data required for this problem consist of number of 

jobs, number of machines in each stage, processing time in 
both stages, sequence dependent setup times in both stages, 
rework probability for both stages and rework times in both 
stages. Number of jobs and number of machines generated 
for the test problems are shown in Table 1. The processing 
times and sequence dependent setup times are generated 
using a uniform distribution ranging [1, 30] in both stages. 
Furthermore, rework probability for each job is generated 

using an exponential distribution ( )e    with the mean equal 

to 0.05 (i.e. 20)  . Also rework times in both stages are 

generated based on Equation 11: 
 

,rework time = (unif(0.3,0.6)×p )i jround  (11) 
 

Table – 1: Size of the generated problems 

 

No. Jobs 
small 5 10 15 20 25 

large 40 80 120 160 200 

No. 
Machines 
(in both 
stages) 

small 
M1=2 
M2=3 

M1=2 M2=2 
M1=3 
M2=2 

large 
M1=16, 
M2=20 

M1=20 
M2=20 

M1=24 
M2=20 

 
4.2 Parameter setting 

 
In this section, for optimizing the behavior of the 

proposed algorithms, appropriate tuning of their parameters 
has been carried out. For this purpose, response surface 
methodology (RSM) is employed. RSM is defined as a 
collection of mathematical and statistical method-based 
experiential, which can be used to optimize processes. 
Regression equation analysis is used to evaluate the response 
surface model. First of all, parameters of each algorithm that 
statistically have significant impact on the algorithms are 
recognized. To identify significant parameters, two levels for 
each parameter are considered. Each factor is measured at 
two levels, which can be coded as −1when the factor is at its 
low level (L) and+1 when the factor is at its high level (H). 
The coded variable can be defined as follows: 

 

0-
               i

i

X X
x

x



 

(12) 

 

Where
iX  and

ix  are the actual value and codified value, 

respectively, 
0X  is the value of

iX  at the center point, and 

x  is the step change value (Myers 2003), The levels and 

tuned value for each factor of each algorithm is provided in 
Table 2. It is noticeable that the values of  

minS  and 
minNE  are 

equal to one. 
 

Table -2: Tuned parameters of the algorithms 
 

 
 
4.3. Experimental results 

 
In this section, the performances of the proposed 

algorithms are compared with ACO which was proposed by 
Huang et al. (2009) [6] and GA applied by Jolai et al. 
(2009)[7]. The purpose of this paper is to find a sequence 
which minimizes maximum completion time. In order to 
conduct the experiment, algorithms are coded in MATLAB 
2009b language and run on a PC with 2.66 GHz and 4GB RAM 
memory computer.   

 
After calculation of the objective function of the proposed 

algorithms, the best solution obtained for each test problems, 

named as solBest , is calculated. Relative percentage deviation 

(RPD) is obtained using Equation 13. 
 

lg
100           

sol sol

sol

A Best
RPD

Best


   (13) 

 

Where lgsolA  is the objective value obtained for a given 

algorithm and test problem. It is clear that lower values of 
RPD are preferred. Also, average relative percentage 

deviation ( )RPD is defined according to Equation 14. 
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.

1                     
.

No Run

i

RPD

RPD
No Run




 (14) 

 
The performance of the proposed algorithms was 

examined by solving 30 different problems in two scales (15 
problems in small scale and 15 problems in large scale). The 
problems are replicated thirty times for each combination 
(i.e. in total 30×30×5 times are implemented).  The 
comparative results in terms of RPD are shown in Tables 3 
and 7 for small and large scales problems, respectively. The 
results show that for in all cases, AIWO obtained better 
performance than the other algorithms.  

 

Table -3: Results in terms of RPD  (small scale problems) 

 

 
 
To validate the statistical significance of the observed 

differences in the solution quality, % 95 confidence interval 
for RPD performance measure in both small scale and large 
scale were applied. These show that AIWO statistically 
outperform the other algorithms in both scales. Furthermore, 
AIWO and AICA obtained better results compared with ACO 
and GA.  In addition, the influences of the number of jobs over 
the different algorithms are studied based on % 95 
confidence interval. The results demonstrate that the change 
in the number of jobs has no impact on AIWO performance 
but for the other algorithms it could be seen as an 
asymmetric trend. In order to evaluate the impact of machine 

balancing on the algorithms performance, RPD  of 
algorithms are performed. This shows that machine 
balancing also has no impact on AIWO performance whereas 
for AICA.  

 
 
 
 
 
 

Table -4: Results in terms of RPD  (large scale problems) 

 

 
 
3. CONCLUSIONS 
 
In this paper, a couple of novel metaheuristics (i.e. AICA and 
AIWO) and a popular metaheuristic (i.e. DPSO) were 
proposed for solving no-wait two stage flexible flow shop 
scheduling problems with probable rework and sequence 
dependent setup times to minimizing make-span. The 
performance of the proposed algorithms was studied in 
terms of relative percentage deviation performance measure 
in both small and large scale problems. Results in both scales 
indicate that AIWO statistically outperforms the other 
algorithms. Furthermore, interaction between the number of 
jobs and algorithm shows that AIWO in all of experimental 
cases dominates the other algorithm. Sensitive analysis was 
performed to study the interaction between machine 
balancing and the proposed algorithms performance. The 
results indicated that machine balancing has no impact on 
AIWO performance whereas for AICA. As a further work, it is 
suggested that new assumptions such as machines with 
different speeds, released time and availability constraints to 
be considered. 
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