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Abstract – Big Data is one of the most challenging aspects in 
today's world filled with emerging information. The fact that it 
leads us to be dealt with massive amounts of overwhelming 
raw data creates new opportunities in the said field. The term 
Big Data describes extremely large volumes of data that comes 
from varied sources in different formats with high velocity. 
Here, the amount of data is not what is important, but what 
can be done with the data is more important. In this process, 
useful information is fetched from the massive amount of data 
and is analyzed. The analyzing part itself is a very challenging 
and demanding piece of work as it demands fault forbearing, 
amenable and ascendible systems that work upon the said 
data. The ultimate goal here is to make the process of 
managing and maintaining data a convenient and feasible 
task. This paper provides a review on Big Data, its data 
structures, details of the HDFS architecture, and replication of 
data files within HDFS. 
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1. INTRODUCTION  
 
What is Big Data? Big Data is not just large volumes of data, 
but also data with high variety and high velocity. In other 
words, Big Data is huge data in different forms being 
generated at high speed which is difficult to manage or 
process using any existing tools and architectures. Let us 
first see what the input data into big data systems is, it could 
be transactions from a bank, web server logs, chatter from 
Twitter or Facebook or any other social network, MP3 songs, 
vlogs or any broadcasted videos, content of web pages, 
personal documents, medical reports, and many more to 
count, as mentioned in [1].   
 
According to [2], in the 1990s the data volume was 
measured in terabytes. In subsequent decade the data 
volume was being measured in petabytes. And the decade of 
2010s is dealing with the exponential data volume driven by 
variety and many sources of digitized data. Almost 
everybody and everything is leaving a digital footprint. Due 
to the volume in data, it has been considered to start 
measuring data in Exabyte.  
 
Some applications that generate a lot of data are shown in 
Fig -1. In the said figure we can see how the amount of 
information is evolving in the graph w.r.t every ten years. 

Data is increasing and exploding decade after decade and so 
are the sources for Big Data. 
 

 
 

Fig -1: The rise of Big Data sources and the Evolution of 
data 

 
2. DATA STRUCTURES OF BIG DATA 
 
Big Data comes in many forms; it can be Structured, Semi-
Structured, Quasi-Structured or Unstructured as in [3]. Fig -2 
shows the Data structure types and the data growth 
accordingly. 
 

 
 

Fig -2: The pyramid of data structures of big data 
 

2.1 Structured Data 
 

Structured data is data that comes with clarity, 
description, presentation, explicate length or format.  This 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 05 Issue: 01 | Jan-2018                       www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |    Page 554 
 

type of data can be easily re-organized or processed by any 
data mining tools. One could envision this type of data as a 
perfectly organized book library where books are orderly 
arranged, labeled and are easily accessible. Hence this type of 
data can be effectively used by organizations. Few examples 
of structured data include numbers, dates, etc., it is believed 
that this type of data comprises about 15-20% of data 
present in the world. In Fig-3, we can see one such example 
representing structured data. We can see data from an excel 
sheet that displays clearly formatted information such as 
First Name, Last Name and Gender of a few people.  

 

2.2 Semi-Structured Data 
 

This type of data is loosely defined or irregularly 
structured which allows a schema-less description format in 
which the data is less constrained than is usually in database 
work. Semi-structured data model allows information from 
several sources, with related but different properties, to be fit 
together in one whole, thus suitable for integration of 
databases and sharing information on the Web. Semi-
structured data is data that may be irregular or incomplete 
and have a structure that may change rapidly or 
unpredictably. It generally has some structure, but does not 
conform to a fixed schema. It is Schema-less and self-
describing, i.e., data carries information about its own schema 
(e.g., in terms of XML element tags). The main attraction for 
semi-structured data is that structure can be imposed upon 
the data as in [4]. Fig -3 shows an example for semi-
structured data; here we can see the XML document that was 
fetched from the ‘view page source’ option while viewing a 
web page. 

 

2.3 Quasi-Structured Data 
 

This data is not among the commonly mentioned types of 
data. It is the one in between the semi-structured and 
unstructured data. In other words, Quasi-structured data is 
data which is unstructured but is in an erratic format which 
can be handled with special tools. For example, consider 
visiting the website www.google.com, the URL (Uniform 
Resource Locator) is tracked into log files of the webpage's 
server; the user’s computer activity is being monitored. The 
URL defines a clickstream that can be parsed and mined by 
data scientists to discover usage patterns and uncover 
relationships between clicks and areas of interest on 
websites, as mentioned in [2]. This is illustrated in Fig -3 
where the user types “HKBK College of Engineering” in the 
search option in Google. Upon a search, the clickstream 
“https://www.google.co.in/search?q=hkbk+college+of+enginee
ring&rlz=1C1CHBD_enIN761IN761&oq=HKBK+col&aqs=chro
me.0.0j69i57j69i61l3j0.3550j0j8&sourceid=chrome&ie=UTF-8” 
is generated which shall be parsed and mined. 

 

2.4 Un-Structured Data 
 

Un-Structured data sometimes referred to as messy or 
unorganized raw data is primarily in the form of text and can 

also be found in forms of multimedia files. This type of data 
does not have a formal structure, in other words the structure 
is unidentifiable. Word processing documents, Books, 
Journals, Health documents, e-mail messages, videos, 
presentations, webpages, photos, audio files and many other 
kinds of business documents are examples of unstructured 
data. As we know that structured data is information with a 
high degree of organization, unstructured data is essentially 
the opposite. To make use of this data, the massive data that 
was worthless is identified and stored in an organized 
fashion. Through the use of specialized software, the items 
can then be searched through. However, there are two 
aspects to be considered, firstly, the process of converting 
unstructured data to organized data would be costly and time 
consuming. Secondly, not all types of unstructured data can 
easily be converted into a structured model. Information 
aging is another factor that needs to be considered in this 
case where the data keeps accumulating day after day but is 
left unused. One example of un-structured data is illustrated 
in Fig -3 in which a video about Big Data from YouTube is 
streamed.  

 

2.5 Heterogeneous Data 
 

This is a combination of all 4 types of data. For example, 
say we have a system that stores call logs for a call-center. In 
this case, data such as date and time stamp could represent 
the structured type. On the other hand, the customer chat 
history could represent the quasi- or semi-structured data. So 
much information can be extracted from the available set of 
the data of different structures. Figure below shows examples 
of all four forms of data.  

 

 
 

Fig -3: Illustration of data structures of big data 
 

3. HADOOP AND HDFS ARCHITECTURE 
 
Hadoop is an open source software framework used to 
process big data. It was created by Doug Cutting and Michael 
J. Cafarella as in [5]. Hadoop was developed for parallel and 
distributed processing systems and was initially motivated in 
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a paper by Google. As we know that managing big data is a 
near to impossible task for the existing traditional systems, 
this was made possible using Hadoop. With Hadoop, there is 
no limit on the storage of data and the process of computing 
huge data generated in high speeds is moving from 
traditional databases to distributed systems. 
 

 
 

Fig -4: The HDFS Architecture and Data Replication 
 

HDFS (Hadoop Distributed File system) is a highly fault 
tolerant parallel file system with a master/slave architecture 
whose objective includes storing and managing huge data 
sets, managing failures of hardware, data access and 
simplifying simple data coherency issues as in [6].  
 
The HDFS architecture is as shown in Fig -4. The figure shows 
the HDFS master/slave architecture. Each cluster consists of 
exactly one NameNode which is a master server that manages 
accesses to files w.r.t clients and also manages file system 
namespace. There can be n number of DataNodes depending 
upon the number of nodes in the cluster. The DataNodes 
manage storage of files. HDFS allows user data to be stored 
into files usually having the files itself split into more than 
one blocks and in turn these blocks stored in one or more 
DataNodes. The responsibility of NameNode is to execute 
operations like Opening, Closing or renaming files. On the 
other hand, the responsibility of DataNodes is to serve the 
read and write requests from the clients. In addition, the 
NameNode also instructs the DataNodes to perform block 
creation, cloning and deletion as per the need.  
 
The NameNode periodically receives a Heartbeat and a 
Blockreport from each of the DataNodes in the cluster. 
Receipt of a Heartbeat implies that the DataNode is 

functioning properly. A Blockreport contains a list of all 
blocks on a DataNode. The NameNode and DataNodes are 
designed to run on commodity hardware that runs a 
GNU/Linux operating system, as mentioned in [6]. HDFS is 
built using the Java language; therefore, any machine that 
supports Java can run the NameNode or the DataNode 
software.  

 

3.1 Data Cloning 
 
Why is data replication required? The answer to this 

question relies on the reliability and performance of HDFS. 
Having replicas in the DataNodes is what distinguishes HDFS 
from other parallel or distributed file systems. The main 
purpose of data replication is to better develop data 
availability, data reliability and fault tolerance. HDFS is 
designed to store files in a very reliable way using data 
replication in the clusters. Each file is stored as a sequence of 
blocks. The replication factor for each file and the block size 
are configurable as per each file. The above figure also shows 
how each file could be replicated in different DataNodes. Here 
we can see that the replication factor can be specified during 
the time of file creation. The replication factor need not be 
restricted since it can be changed later. All files in HDFS have 
strictly one writer at any point of time and can be written 
only once. All decisions regarding cloning of blocks are made 
by the NameNode.  

 

3.2 Data Replica Placement 
 
Instances of HDFS run on a cluster of computers that 

spread across a number of racks. Switches are used for 
communication between two nodes in different racks. The 
rack id to which each DataNode needs to belong to is 
determined by the NameNode. Usually the replicas are placed 
in DataNodes on unique racks. This way data loss can be 
prevented even if an entire rack fails since data can be 
fetched from another rack that holds the replica. Hence the 
replicas can be evenly distributed in the cluster. This policy 
eases balancing component failure but increases cost of 
writes as each write needs a transfer of replica blocks to 
another rack. 

 
For instance, when a file has a replication factor of 3, 

HDFS’s placement policy is to put one replica on one node in 
the local rack, another on a node in a different (remote) rack, 
and the last on a different node in the same remote rack. This 
policy cuts the inter-rack write traffic which generally 
improves write performance. The chance of rack failure is far 
less than that of node failure; this policy does not impact data 
reliability and availability guarantees. However, it does 
reduce the aggregate network bandwidth used when reading 
data since a block is placed in only two unique racks rather 
than three. With this policy, the replicas of a file do not evenly 
distribute across the racks. One third of replicas are on one 
node, two thirds of replicas are on one rack, and the other 
third are evenly distributed across the remaining racks. This 
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policy improves write performance without compromising 
data reliability or read performance as in [6]. 

 

3.3 Data Selection 
 
When a read request is made, HDFS tries to satisfy it from 

the replica that is nearest to the reader. The replica, if exists, 
on the same rack as the requestor, is preferred to satisfy the 
request. Else, if the cluster spans multiple data centers, then 
the replica residing at the local data center is chosen over a 
remote replica. 

 

3.4 Space Redeeming 
 
Traditionally when we delete a file or a folder in our system 
on windows, the file is moved to recycle bin. This means the 
files space is not freed yet. File deletes in HDFS work 
similarly. When a file is deleted by an application or a user, it 
is not deleted from HDFS immediately. Upon a delete, first the 
file is renamed and moved to the /trash directory. The file 
resides in the trash directory for a configured amount of time. 
After the time expires, the file is then deleted permanently 
from the HDFS namespace by the NameNode.  
 
The deletion of a file causes all block spaces to be freed that 
are associated with the deleted file. However, the file can be 
restored while it still resides in the trash directory. To 
undelete a file, the deleted file must be restored from the 
trash directory. As per [6], the current default policy is to 
delete files permanently from trash that are more than 6 
hours old. 
 

4. CONCLUSION AND FUTURE WORK 
 
 HDFS should support use of snapshots that can be helpful in 
storing a copy of data at a particular instance of time. This 
can be particularly helpful to rollback a corrupted HDFS 
instance to a previously known point of time when the 
system worked without issues. There is a potential for 
making faster advancements in scientific discipline for 
analyzing large amounts of data .The technical challenges are 
most common across the large variety of application 
domains, therefore new cost effective and faster methods 
must be implemented to analyze the big data.  
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