
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 553

Unraveling the Data Structures of Big data, the HDFS Architecture and
Importance of Data Replication in HDFS

Aseema Sultana1

1Asst.Professor, Dept. of Information Science and Engineering, HKBK CE, Bangalore, India
---***---

Abstract – Big Data is one of the most challenging aspects in
today's world filled with emerging information. The fact that it
leads us to be dealt with massive amounts of overwhelming
raw data creates new opportunities in the said field. The term
Big Data describes extremely large volumes of data that comes
from varied sources in different formats with high velocity.
Here, the amount of data is not what is important, but what
can be done with the data is more important. In this process,
useful information is fetched from the massive amount of data
and is analyzed. The analyzing part itself is a very challenging
and demanding piece of work as it demands fault forbearing,
amenable and ascendible systems that work upon the said
data. The ultimate goal here is to make the process of
managing and maintaining data a convenient and feasible
task. This paper provides a review on Big Data, its data
structures, details of the HDFS architecture, and replication of
data files within HDFS.

Key Words: Big Data, Structured, Semi-structured,
Quasi-structured, Un-structured Data, Hadoop, HDFS
Architecture, Data Replication, Space Reclamation.

1. INTRODUCTION

What is Big Data? Big Data is not just large volumes of data,
but also data with high variety and high velocity. In other
words, Big Data is huge data in different forms being
generated at high speed which is difficult to manage or
process using any existing tools and architectures. Let us
first see what the input data into big data systems is, it could
be transactions from a bank, web server logs, chatter from
Twitter or Facebook or any other social network, MP3 songs,
vlogs or any broadcasted videos, content of web pages,
personal documents, medical reports, and many more to
count, as mentioned in [1].

According to [2], in the 1990s the data volume was
measured in terabytes. In subsequent decade the data
volume was being measured in petabytes. And the decade of
2010s is dealing with the exponential data volume driven by
variety and many sources of digitized data. Almost
everybody and everything is leaving a digital footprint. Due
to the volume in data, it has been considered to start
measuring data in Exabyte.

Some applications that generate a lot of data are shown in
Fig -1. In the said figure we can see how the amount of
information is evolving in the graph w.r.t every ten years.

Data is increasing and exploding decade after decade and so
are the sources for Big Data.

Fig -1: The rise of Big Data sources and the Evolution of
data

2. DATA STRUCTURES OF BIG DATA

Big Data comes in many forms; it can be Structured, Semi-
Structured, Quasi-Structured or Unstructured as in [3]. Fig -2
shows the Data structure types and the data growth
accordingly.

Fig -2: The pyramid of data structures of big data

2.1 Structured Data

Structured data is data that comes with clarity,
description, presentation, explicate length or format. This

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 554

type of data can be easily re-organized or processed by any
data mining tools. One could envision this type of data as a
perfectly organized book library where books are orderly
arranged, labeled and are easily accessible. Hence this type of
data can be effectively used by organizations. Few examples
of structured data include numbers, dates, etc., it is believed
that this type of data comprises about 15-20% of data
present in the world. In Fig-3, we can see one such example
representing structured data. We can see data from an excel
sheet that displays clearly formatted information such as
First Name, Last Name and Gender of a few people.

2.2 Semi-Structured Data

This type of data is loosely defined or irregularly
structured which allows a schema-less description format in
which the data is less constrained than is usually in database
work. Semi-structured data model allows information from
several sources, with related but different properties, to be fit
together in one whole, thus suitable for integration of
databases and sharing information on the Web. Semi-
structured data is data that may be irregular or incomplete
and have a structure that may change rapidly or
unpredictably. It generally has some structure, but does not
conform to a fixed schema. It is Schema-less and self-
describing, i.e., data carries information about its own schema
(e.g., in terms of XML element tags). The main attraction for
semi-structured data is that structure can be imposed upon
the data as in [4]. Fig -3 shows an example for semi-
structured data; here we can see the XML document that was
fetched from the ‘view page source’ option while viewing a
web page.

2.3 Quasi-Structured Data

This data is not among the commonly mentioned types of
data. It is the one in between the semi-structured and
unstructured data. In other words, Quasi-structured data is
data which is unstructured but is in an erratic format which
can be handled with special tools. For example, consider
visiting the website www.google.com, the URL (Uniform
Resource Locator) is tracked into log files of the webpage's
server; the user’s computer activity is being monitored. The
URL defines a clickstream that can be parsed and mined by
data scientists to discover usage patterns and uncover
relationships between clicks and areas of interest on
websites, as mentioned in [2]. This is illustrated in Fig -3
where the user types “HKBK College of Engineering” in the
search option in Google. Upon a search, the clickstream
“https://www.google.co.in/search?q=hkbk+college+of+enginee
ring&rlz=1C1CHBD_enIN761IN761&oq=HKBK+col&aqs=chro
me.0.0j69i57j69i61l3j0.3550j0j8&sourceid=chrome&ie=UTF-8”
is generated which shall be parsed and mined.

2.4 Un-Structured Data

Un-Structured data sometimes referred to as messy or
unorganized raw data is primarily in the form of text and can

also be found in forms of multimedia files. This type of data
does not have a formal structure, in other words the structure
is unidentifiable. Word processing documents, Books,
Journals, Health documents, e-mail messages, videos,
presentations, webpages, photos, audio files and many other
kinds of business documents are examples of unstructured
data. As we know that structured data is information with a
high degree of organization, unstructured data is essentially
the opposite. To make use of this data, the massive data that
was worthless is identified and stored in an organized
fashion. Through the use of specialized software, the items
can then be searched through. However, there are two
aspects to be considered, firstly, the process of converting
unstructured data to organized data would be costly and time
consuming. Secondly, not all types of unstructured data can
easily be converted into a structured model. Information
aging is another factor that needs to be considered in this
case where the data keeps accumulating day after day but is
left unused. One example of un-structured data is illustrated
in Fig -3 in which a video about Big Data from YouTube is
streamed.

2.5 Heterogeneous Data

This is a combination of all 4 types of data. For example,
say we have a system that stores call logs for a call-center. In
this case, data such as date and time stamp could represent
the structured type. On the other hand, the customer chat
history could represent the quasi- or semi-structured data. So
much information can be extracted from the available set of
the data of different structures. Figure below shows examples
of all four forms of data.

Fig -3: Illustration of data structures of big data

3. HADOOP AND HDFS ARCHITECTURE

Hadoop is an open source software framework used to
process big data. It was created by Doug Cutting and Michael
J. Cafarella as in [5]. Hadoop was developed for parallel and
distributed processing systems and was initially motivated in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 555

a paper by Google. As we know that managing big data is a
near to impossible task for the existing traditional systems,
this was made possible using Hadoop. With Hadoop, there is
no limit on the storage of data and the process of computing
huge data generated in high speeds is moving from
traditional databases to distributed systems.

Fig -4: The HDFS Architecture and Data Replication

HDFS (Hadoop Distributed File system) is a highly fault
tolerant parallel file system with a master/slave architecture
whose objective includes storing and managing huge data
sets, managing failures of hardware, data access and
simplifying simple data coherency issues as in [6].

The HDFS architecture is as shown in Fig -4. The figure shows
the HDFS master/slave architecture. Each cluster consists of
exactly one NameNode which is a master server that manages
accesses to files w.r.t clients and also manages file system
namespace. There can be n number of DataNodes depending
upon the number of nodes in the cluster. The DataNodes
manage storage of files. HDFS allows user data to be stored
into files usually having the files itself split into more than
one blocks and in turn these blocks stored in one or more
DataNodes. The responsibility of NameNode is to execute
operations like Opening, Closing or renaming files. On the
other hand, the responsibility of DataNodes is to serve the
read and write requests from the clients. In addition, the
NameNode also instructs the DataNodes to perform block
creation, cloning and deletion as per the need.

The NameNode periodically receives a Heartbeat and a
Blockreport from each of the DataNodes in the cluster.
Receipt of a Heartbeat implies that the DataNode is

functioning properly. A Blockreport contains a list of all
blocks on a DataNode. The NameNode and DataNodes are
designed to run on commodity hardware that runs a
GNU/Linux operating system, as mentioned in [6]. HDFS is
built using the Java language; therefore, any machine that
supports Java can run the NameNode or the DataNode
software.

3.1 Data Cloning

Why is data replication required? The answer to this

question relies on the reliability and performance of HDFS.
Having replicas in the DataNodes is what distinguishes HDFS
from other parallel or distributed file systems. The main
purpose of data replication is to better develop data
availability, data reliability and fault tolerance. HDFS is
designed to store files in a very reliable way using data
replication in the clusters. Each file is stored as a sequence of
blocks. The replication factor for each file and the block size
are configurable as per each file. The above figure also shows
how each file could be replicated in different DataNodes. Here
we can see that the replication factor can be specified during
the time of file creation. The replication factor need not be
restricted since it can be changed later. All files in HDFS have
strictly one writer at any point of time and can be written
only once. All decisions regarding cloning of blocks are made
by the NameNode.

3.2 Data Replica Placement

Instances of HDFS run on a cluster of computers that

spread across a number of racks. Switches are used for
communication between two nodes in different racks. The
rack id to which each DataNode needs to belong to is
determined by the NameNode. Usually the replicas are placed
in DataNodes on unique racks. This way data loss can be
prevented even if an entire rack fails since data can be
fetched from another rack that holds the replica. Hence the
replicas can be evenly distributed in the cluster. This policy
eases balancing component failure but increases cost of
writes as each write needs a transfer of replica blocks to
another rack.

For instance, when a file has a replication factor of 3,

HDFS’s placement policy is to put one replica on one node in
the local rack, another on a node in a different (remote) rack,
and the last on a different node in the same remote rack. This
policy cuts the inter-rack write traffic which generally
improves write performance. The chance of rack failure is far
less than that of node failure; this policy does not impact data
reliability and availability guarantees. However, it does
reduce the aggregate network bandwidth used when reading
data since a block is placed in only two unique racks rather
than three. With this policy, the replicas of a file do not evenly
distribute across the racks. One third of replicas are on one
node, two thirds of replicas are on one rack, and the other
third are evenly distributed across the remaining racks. This

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 556

policy improves write performance without compromising
data reliability or read performance as in [6].

3.3 Data Selection

When a read request is made, HDFS tries to satisfy it from

the replica that is nearest to the reader. The replica, if exists,
on the same rack as the requestor, is preferred to satisfy the
request. Else, if the cluster spans multiple data centers, then
the replica residing at the local data center is chosen over a
remote replica.

3.4 Space Redeeming

Traditionally when we delete a file or a folder in our system
on windows, the file is moved to recycle bin. This means the
files space is not freed yet. File deletes in HDFS work
similarly. When a file is deleted by an application or a user, it
is not deleted from HDFS immediately. Upon a delete, first the
file is renamed and moved to the /trash directory. The file
resides in the trash directory for a configured amount of time.
After the time expires, the file is then deleted permanently
from the HDFS namespace by the NameNode.

The deletion of a file causes all block spaces to be freed that
are associated with the deleted file. However, the file can be
restored while it still resides in the trash directory. To
undelete a file, the deleted file must be restored from the
trash directory. As per [6], the current default policy is to
delete files permanently from trash that are more than 6
hours old.

4. CONCLUSION AND FUTURE WORK

 HDFS should support use of snapshots that can be helpful in
storing a copy of data at a particular instance of time. This
can be particularly helpful to rollback a corrupted HDFS
instance to a previously known point of time when the
system worked without issues. There is a potential for
making faster advancements in scientific discipline for
analyzing large amounts of data .The technical challenges are
most common across the large variety of application
domains, therefore new cost effective and faster methods
must be implemented to analyze the big data.

ACKNOWLEDGEMENT

I thank Dr. Syed Mustafa, Professor and Head, Department of
Information Science and Engineering, HKBK CE for
motivating me and providing their expertise that greatly
assisted in writing the paper.

I am also grateful to the authors of papers and documents I
have referenced. I would like to express my appreciation to
the authors for sharing their pearls of wisdom.

REFERENCES

[1] Big Data Now: 2012 Edition by O’Reilly Media, Inc.

[2] Master Thesis on Tools and Methods for Big Data

Analysis, by Miroslav Vozábal- 2016, University of West
Bohemia.

[3] Research Paper on Big Data and Hadoop, Iqbaldeep

Kaur, Navneet Kaur, Amandeep Ummat, Jaspreet Kaur,
Navjot Kaur. IJCST Vol. 7, ISSue 4, Oct - Dec 2016.

[4] Adding Structure to Unstructured Data, Database

Research Group (CIS), University of Pennsylvania
ScholarlyCommons. 1997.

[5] HADOOP ARCHITECTURE AND FAULT TOLERANCE

BASED HADOOP CLUSTERS IN GEOGRAPHICALLY
DISTRIBUTED DATA CENTER, T. Cowsalya and S.R.
Mugunthan, ARPN Journal of Engineering and Applied
Sciences.

[6] The HDFS Architecture guide,
https://hadoop.apache.org/.

[7] Big Data And Hadoop: A Review Pape, Rahul Beakta,
https://www.researchgate.net/publication/

BIOGRAPHIES

Prof. Aseema Sultana was born in
Bangalore, India. She received the B.E
degree in ISE from HKBK CE, in 2010,
and M.Tech in CSE from MVJ CE, in 2012.
She worked as a Sr. Project Engineer in
Wipro (2012-2016) and currently
working as an Asst. Professor in HKBK
CE.

1’st Author
Photo

