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Abstract - We present a novel method of determination of 
classical electromagnetic field distribution in a one-
dimensional structured medium using microscopic approach 
for interaction between the field and the medium. Using the 
Hamiltonian constructed from the microscopic approach, the 
quantum electric field operator for the one-dimensional 
photonic crystal is obtained and the electric field distribution 
inside the photonic crystal is determined as the expectation 
value of this operator with coherent states taken as the field 
states.  
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1. INTRODUCTION 
 
The structured media like the photonic crystals and the 
metamaterials are attracting lot of interest among the 
researchers in recent times [1,2,3,4,5,6]. These materials 
show the properties that are not readily available in the 
natural materials. Photonic band gap and negative refractive 
index are among the main properties shown by these 
materials. Because of their unusual properties, they show lot 
of promise in making novel optical and microwave devices. If 
the structure size at submicron level they may quantum 
nature and to study their properties fully quantum treatment 
of field and medium is necessary. In this short letter we 
present a novel method of studying the classical and 
quantum nature of electromagnetic field in structured 
media. Crenshaw [7,8 ] obtained the macroscopic Maxwell’s 
equations in media starting from the microscopic quantum 
electrodynamic principles. In this approach both the field 
and the medium are considered as quantized harmonic 
oscillators and the interaction between the field and the 
medium is given by dipole interaction. Transition from 
microscopic regime to macroscopic regime is made by 
suitable approximations and as a consequence of this a 
macroscopic Hamiltonian in terms of averaged quantum 
field operators and material susceptibilities is obtained. We 
take this Hamiltonian as the starting point to construct the 
Hamiltonian for a structured medium and equations of 
motion for the averaged field operators are obtained from 
Heisenberg’s equation of motion. Quantum electric field 
operator in the structured medium can be constructed from 
the field operators. The coherent states of electromagnetic 
fields represent quantum states which are very close in 
properties to the classical fields. Taking the coherent states 

of the fields, we obtain the expectation value of electric field 
operator. This represents the classical electric field 
distribution in the structured medium. In this letter, we 
determine the electric field distribution in one dimensional 
photonic crystal in the form of alternating layers of two 
different dielectrics. The same procedure can be 
straightforwardly extended to two and three dimensional 
structured media.  

 

2. MACROSCOPIC HAMILTONIAN FROM  
     MICROSCOPIC HAMILTONIAN 
 

The Hamiltonian for the electromagnetic field in dielectric 
medium is formed from quantum electrodynamic principles. 
Here the electromagnetic field is considered as a collection of 
harmonic oscillators with creation and destruction field 

operators †â  and â respectively. The medium is modeled as a 
field of discrete, quantized harmonic oscillators with the 
interaction between the field and medium given by electric 
and magnetic diploe interactions. The interaction of the 
electric field of the radiation with the medium is given by 
electric diploe interaction with the electric diploe 

operator ˆ
e . The creation and destruction operators for the 

medium oscillators are given as †b̂ and b̂ respectively. 
Similarly the interaction of magnetic field of radiation with 

medium is given by magnetic dipole moment operator ˆ
m and 

corresponding creation and destruction operators for the 

medium oscillators are †ĉ  and ĉ  respectively. The 
Hamiltonian is [7]     
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                                                                                                 … (1) 

where l  the frequency of radiation in the mode l  and b , 

c  are the resonance frequencies associated with the electric 

and magnetic dipoles respectively. The indices n and m  

enumerate the locations nr and mr of atoms or molecules of 

the medium and indicate the summation over polarization 
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states of the radiation. The coupling between the fields and 
the medium are given by the terms          

                            1/2 ˆˆ(2 / )
ll l eh V    ke   and    

                            1/2 ˆ ˆˆ(2 / ) ( )
ll l mf V     kk e .      

The Heisenberg’s equations of motion give the evolution 
equations for field operators and the medium operators. 
Elimination of medium degree of freedom in equations of 
motion and adiabatic-following and continuum 
approximations were made to move from microscopic regime 
to macroscopic regime. The effective Hamiltonian 
corresponding to the macroscopic regime is given as [7] 

 †(1 2 2 )( )e m

l l l l l

l

H a a C


                (2) 

where e

l and m

l denote the electric and the magnetic 

susceptibilities of the medium and the term C corresponds to 
zero-point energy which can be neglected when we are 
primarily interested in  classical electromagnetic fields. Here 

la  indicate the spatially averaged field operator of the 

mode l . This averaging process results in smoothing of field 
fluctuations that occur in-between the oscillators.  

  We can use the Hamiltonian in Eq.(2) for determining 
electromagnetic field distribution in structured media. The 
Hamiltonian for the structured media neglecting the zero-
point energy is  

 †[1 2 ( ) 2 ( )]e mH a a   r r                           (3) 

Here the electric and magnetic susceptibilities ( )e r and 

( )m r  respectively are functions of position vectors and the 

subscripts l  and  are dropped because we are interested in 
fundamental mode of a plane polarized wave.  The terms 

†2 ea a  and †2 ma a  in Eq. (3) represent the part of the 

energy that is used up to polarize and also to maintain the 
polarization of the medium. The Heisenberg’s equation of 
motion for the operator a with the above Hamiltonian results 
in the evolution equation [9,10] 
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3. ELECTRIC FIELD OPERATOR AND ELECTRIC  
     FIELD DISTRIBUTION 
 

In quantum optics when interaction at microscopic scales 
are considered the dimensions of atoms are negligible 
compared to the wavelength of radiation resulting in the 

approximation [9,10] 1e  k r . With this approximation the 
electric field operator for the structured medium can 
constructed using Eq.(1.4) as  
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where V denotes the effective volume of the medium used 
for electromagnetic field quantization. The electric field 
distribution in structured media can be obtained as the 
expectation value of electric field operator with coherent 
states of radiation. Coherent states show properties very 
close to the classical fields. For quantized electromagnetic 

fields if â  and †â are replaced by continuous variables results 
in classical fields. One way of doing this through the 

eigenstates of â  which is given as â    , where 
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    are coherent states given in 

terms of number states n  and ie    a complex number 

[9,10]. The electric field distribution in structured media for 
the fundamental mode is  
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                                                                                    … (6) 

  The key feature of above expression is that arriving at this is 
relatively simpler than solving the wave equation for a 
structured media. Once electric filed is known the magnetic 
field configuration can be found by standard procedure.   

 

Fig -1: Electric Field Distribution in Periodic Dielectric 
 

As an example a one-dimensional periodically structured 
dielectric medium like one-dimensional photonic crystal is 
considered. The lattice constant is 1d   unit and the layers 

have relative dielectric constant alternating between 1 1r    

and 2 13r  . The electric field distribution along the length 

of the photonic crystal for varying frequencies is shown in 
the graph Fig.1. The range of frequencies for which the 
expectation value of the electric field operator is almost zero 
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corresponds to the forbidden frequency band which is the 
photonic band gap. The Hamiltonian in Eq. (3) can be used to 
determine the electric field distribution inside the 
nanostructured dielectric medium where the structure scale 
is small enough for the quantum effects to manifest.   
 

3. FIRST ORDER QUANTUM COHERENCE FUNCTION    
     IN PERIODICALLY STRUCTURED DIELECTRIC   
     MEDIUM 
 
   The Quantum Coherence Function gives the measure of 
much the coherence of the radiation is degraded in a medium. 
It is also a measure of how much of the quantum nature of the 
radiation is lost due to the fluctuation in field which occur 
due the discreetness of the matter at the microscopic level 
The first order quantum coherence function for the electric 
fields at two different places in the one-dimensional 
structured medium can be given as [9,11,12] 
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. Here the function points 1 1( , )x z t  and 

2 2( , )x z t  are two positions at which the electric fields are 

measured at the same time .t For a perfect periodic structure 
in which there is no  random variation in the distance 
between the lattice points, the magnitude of coherence 

function is unity, (1) 1G  . For a one-dimensional periodic 

structure which is not perfect, there is some random 
variation in the thickness of each layer. The random variation 
in the thickness of the dielectric layers can be accounted by 
introducing a random step function, ( )z in the susceptibility 

function ( )z  as   

                               
2 ( ) 2 ( ) ( )ai z i z i ze e e
                                (8) 

where ( )a z and ( )z denote the susceptibility functions of 

the structure with a random variation in the width of a layer 
and of an ideal structure with perfect periodicity respectively. 
The random step function is defined as  
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The magnitude of the first order coherence is given as  
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For perfect periodic structure the fluctuations in electric   

field is  
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which means that fluctuations are same as in free space. 

   Now considering a one-dimensional dielectric structure in 
which the lattice distance is normalized to unity, 1p   and a 

random variation in the thickness of the each layer up to the 
one layer thickness, the first order quantum coherence in Eq. 
(10) gives the measure of the quantum coherence 
degradation with distance of the one-dimensional structure 
as shown in the Fig. 2.     

 

 

Fig -2: Magnitude of First Order Coherence Imperfect 
Periodic Structure 

 
When the random variation in the thickness of the layers 
vary up to one layer thickness, then the quantum coherence 
property degrades exponentially and almost completely 
disappears at three layers thickness as seen in Fig. 2. This 
shows that the random variation in the periodic structure 
leads to fluctuations in the electric field which destroys the 
quantum nature of the field at a rate exponentially to the 
distance in the periodic structure.      
 

3. CONCLUSIONS 
 
 Microscopic approach for determining the electric field 
distribution in structured medium is presented starting from 
the Hamiltonian for electromagnetic field in medium. The 
Hamiltonian is expressed in terms of macroscopic material 
parameters like susceptibility and spatially averaged 
quantum field operators. Evolution equations are 
determined from which electric field operator is constructed. 
Finally electric field in structured medium is found as the 
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expectation value of the electric field operator in the 
structured medium. This formalism could be easily used to 
study the quantum nature of electromagnetic fields in 
structured media because it offers the convenience of using 
macroscopic material parameters of interest. The loss of the 
quantum nature of the electric field along the one-
dimensional periodic structure is determined from the first 
order quantum coherence function. This shows that the 
quantum nature of the field decays exponentially with the 
distance in a structured medium.  
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