
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 634

VERIFICATION OF SECURITY FOR UNTRUSTED THIRD PARTY IP CORES

MANISHA P1, SUDHAMAYI B2, KIRANMAI M3

1PG Scholar in VLSI-SD, Nimra college of engineering and technology, vijayawada.
 2 Assistant professor in Department of ECE nimra college of engineering and technology,vijayawada.

3 PG Scholar in VLSI-SD, Nimra college of engineering and technology, vijayawada.
---***---

Abstract - Globalization of the system-on-chip (SoC) design
flow has created opportunities for rogue intellectual property
(IP) vendors to insert malicious circuits (a.k.a. hardware
Trojans) into their IPs. We propose to formally verify third
party IPs (3PIPs) for unauthorized hird party’s. We validate
our technique using Trojan benchmarks from the Trust-Hub

keyWords: sog,ip,Trojan,pip

1.INTRODUCTION :

A. Motivation

Fabless System-on-a-Chip (SoC) designers integrate
thirdpartyIntellectual Property (3PIP) cores with in-house IP
coresto design SoCs. They outsource the fabrication and test
phases.3PIP vendors, foundries and test companies are
distributedworldwide. An SoC designer uses these services
to meet the tight time-to-market deadlines and to reduce the
design, fabrication, and test costs.

Not with standing its benefits, globalization of the SoC design
flow has created opportunities for rogue elements within the
supply chain to corrupt the ICs Rogue elements in a foundry
can alter a design or include malicious circuits(called
hardware Trojans) during fabrication. Similarly, rogue
elements in the 3PIP companies can insert Trojans in theirIP.
The inserted Trojans may be conditionally triggered or
always on. When triggered, a Trojan may result ina deadlock
or failure of the system (overt attack), or create a backdoor
allowing the attacker to gain remote access to the system
(covert attack) .

To build a trustworthy SoC design, it is necessary to ensure
the trustworthiness of the 3PIPs. However since this is not
always possible, the SoC integrator should ensure that all the
security vulnerabilities in any of the 3PIPs are detected or
their effects muted before they damage the system.

B. Previous work

Trojan-detection techniques in 3PIPs can be broadly
classified into code/structural analysis and formal
verification techniques.

Code/structural analysis techniques. Since 3PIPs are
typically delivered as Register Transfer Level (RTL) VHDL /
Verilog codes, code coverage analysis is performed on RTL

codes to identify suspicious signals that may be a part of a
Trojan . Even 100% coverage of the RTL code in a design
does not guarantee that it is fault-free . Hence, code coverage
analysis does not guarantee its trustworthiness. Alternately,
an SoC integrator may automatically analyze the 3PIP code
and mark suspicious signals using controllability and
reachability values of signals . FANCI marks gates with low
activation probability as suspicious . VeriTrust marks gates
that are not driven by functional inputs as suspicious . The
implicit assumption here is that those gates are driven by
Trojans, as they do not perform any computation on
functional inputs. The SoC integrator then manually analyzes
the small number of suspicious gates to determine if they are
part of a Trojan.

DeTrust exploits the limitations of FANCI and Veri Trustto
design Trojans that bypass them . To bypass FANCI,DeTrust
designs Trojans whose trigger vector arrives over multiple
clock cycles. If the probability of activating a signal is below a
pre-determined threshold, FANCI marks it as suspicious. For
example, if a 128-bit trigger arrives in one clock cycle, the
probability of activating the trigger signal is 2-128, and FANCI
marks it as suspicious. However, DeTrust makes the trigger
signals arrive as four-bit nibbles over 32 clock cycles. Now,
FANCI computes the probability of activating the trigger
signal to be 2-4. Since this value is significantly higher, FANCI
does not mark this signal as suspicious. To bypass VeriTrust,
DeTrust ensures that each gate in the Trojan is driven by a
subset of functional inputs.The limitations of code/structural
analysis techniques are: (1) they do not guarantee Trojan
detection [10], (2) they burden the designer with manual
analysis, and (3) they analyze only the combinational parts
of the design.

Formal verification techniques. An SoC integrator and a
3PIP vendor can agree upon a pre-defined set of security
properties that the IP should satisfy . The SoC integrator can
check the 3PIP for these properties. To check if a design
honors these properties, one converts the target design into
a proof checking format (for example, Coq). This technique
has been demonstrated to detect data leakage and malicious
modifications to registers .

The limitations of this technique are: (1) One can check if a
design satisfies pre-defined properties, but not if the design
has additional vulnerabilities while satisfying these
properties . (2) Lack of automation to convert VHDL/Verilog
to Coq format. (3) The VHDL/Verilog and Coq

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 635

representations of the target design may not be equivalent; If
a Coq representation of a design is considered trustworthy, it
does not necessarily mean that the corresponding
VHDL/Verilog representation is trustworthy.

Jasper uses a proprietary “taint propagation” technology to
identify if secret data can be leaked by exploiting design bugs
However, it does not target Trojans. The authors of
identified and verified three security properties of SoCs
using taint-propagation techniques: (1) the firmware should
not read the hardware encryption keys, (2) the firmware
should not modify the access privileges of memory and
input/outputs, and (3) the host software should not modify
the SoC security monitor. However, these techniques target
unintentional design bugs, but not Trojans.

key(127:0)

key(127:0)

 output(127:0)

Fig. 1: AES design with a hardware Trojan. The Trojan
leaks the secret key through the output when the 128-bit

plaintext is all 1’s.

The Trojan components are shown in red.
Recently, formal verification techniques to detect corruption
of critical registers by Trojans have been proposed .
However, these techniques do not detect Trojans that cause
information leakage.

C.Contribution: Formally verifying 3PIPs for the presence
of information leaking trojans

We propose to detect Trojans in 3PIP that leak sensitive
information (cryptographic key, plaintext, or intermediate
computation).

We use model checking to detect Trojans. The input to the
model checker is the target property to be checked and a
formal description of the design in temporal logic, which is a
representation of the design as a sequence of states. The
output of the model checker is a set of states which satisfy
the given property, or a witness of a sequence which violates
the property. The property that we will check is “does the
design leak any sensitive information?” If a design violates
this property, it is infected with information-leaking Trojans;
otherwise, it is free from such Trojans. In addition to
identifying Trojan infected designs, the model checker
generates the witness (set of inputs over several clock
cycles) that triggers the Trojan.

The advantages of this technique are: (1) It can be used on
any (cryptographic) design; (2) It guarantees detection of
information leaking Trojans and produces the trigger
condition for the Trojan, if the 3PIP has one; (3) It can be
used in conjunction with other property-based Trojan
detection techniques .

D. Motivational example

A Trojan which leaks the critical data stored in register R,
through an output port O is formally defined as

 ∃ itrigger ∊ I ∍ D ∣= (R == O) ‖ (R == ¬O) ∀r ∊R

where I is the set of possible input patterns and itrigger is the
set of input pattern that triggers the Trojan, and r is the
value of the register R. D is the design. On applying itrigger, the
contents of register R is leaked through the output port O.

Example 1: Consider the AES design shown in Figure 1. The
Trojan leaks the secret key through the output when the
128- bit plaintext is all 1s. Here, the Trojan maps each bit of
the key to the corresponding bit of the output. Based on the
trigger, a Trojan can be (i) always on (i.e. no trigger), (ii)
triggered by only current inputs, (iii) triggered after a
specific number of clock cycles, and (iv) triggered by inputs
arriving over multiple clock cycles . FANCI and VeriTrust
deal with Trojans of type (i) and (ii). DeTrust designed
Trojans of type (iii) and (iv) to defeat them. Our technique
can detect data-corrupting Trojans of all types.

E. Organization of the paper

The rest of the paper is organized as follows: Section II
describes the threat model, prior work, and background on
model checking. Section III derives properties to detect
Trojans that leak information. Results are provided in
Section IV. Section V concludes the paper.

II. THREAT MODEL AND BACKGROUND

A. Threat model

A 3PIP vendor or a rogue element in the 3PIP vendor
company is the attacker. The attacker seeks to subvert the
security of the SoC that is using his IP. He introduces
hardware Trojans in the IP to corrupt critical data. He only
inserts Trojans whose trigger and payload characteristics
are “digital.” He cannot design a Trojan that depends on the
physical characteristics of the SoC as these characteristics
are determined by the design-synthesis constraints; the 3PIP
vendor has no control over the design constraints imposed
on the SoC by the SoC integrator. If a 3PIP has “non-volatile”
components, a designercan identify them as he needs to

ADVANCE ENCRYPTION

STANDARD(AES)

S

SSSSS

Is the 128-bit plaintext all 1’s?

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 636

manufacture them; thus, we consider Trojans that do no use
non-volatile components.

The SoC integrator is the defender. His objective is to detect
Trojans, if any, in the 3PIP. We assume that the defender has
access to the RTL/gate-level netlist of the 3PIP and hence
can verify its function. Furthermore, he knows the
functionality of the input and output ports of the 3PIP from
the specification.

Protocol to verify trustworthiness of an IP. We follow the
protocol outlined in below. The SoC integrator and the IP
vendor agree upon a set of security properties for the design.
For instance, one property can check for the valid ways to
update a stack pointer in a processor. An SoC integrator
performs functional verification. The attacker in the IP
design house can insert Trojans that corrupt critical data,
while satisfying the agreed upon security properties, and
passes functional verification. The task of the SoC integrator
is twofold: (1) check if the design satisfies the agreed upon
security properties, and (2) check if the design has Trojans
that corrupt data without violating these properties.

B. Formal methods in hardware design

Formal verification is an approach to ensure that
safetycritical components in a design are exhaustively tested
for correctness . Quality criteria may be specified using
properties described in temporal logic and its variations . In
linear time temporal logic (LTL), the notion of time is that of
a linearly ordered set (this can be thought of as a possible
sequence of states).

Model checking is the process of analyzing a design forthe
validity of properties stated in temporal logic. A model
checker takes the Verilog code along with the property
written as a Verilog assertion and derives a Boolean
satifiability (SAT) formulation for validating/invalidating the
property. This SAT formulation is fed to a SAT engine, which
then searches for an input assignment that violates the
property .

Bounded model checking. In practice, designers know the
bounds on the number of steps (clock cycles) with in which a
property should hold. In Bounded Model Checking (BMC), a
property is determined to hold for at least a finite sequence
of state transitions. The Boolean formula for
validating/invalidating the target property is given to a SAT
engine, and if a satisfying assignment is observed within T
clock cycles, that assignment is a witness against the target
property. We develop properties to detect Trojans that
corrupt critical data and verify the target design for
satisfaction of these properties using a bounded model
checker.

C. Formal methods in hardware security

SAT-based techniques can be used to detect fault attacks .
Satisfiability Modulo Theory-based techniques can evaluate
the strength of software countermeasures against side
channel attacks . These techniques do not target Trojans.

III.FORMALLY DETECTING INFORMATION LEAKAGE

A. A first attempt at a property to detect information
leakage

 ∃ i ∊ I ∍ D ∣= (s == o) (1)

To detect an information-leaking Trojan, the property should
check if there exists an input assignment such that the secret
is mapped to an output port for all possible values of the
secret. Equation (2) lists this property. The SAT engine
searches for an input assignment that violates the property
in the target design. In this case, the SAT engine searches for
an input assignment that leaks the secret, s, to the output o,
for all possible values (S) of the secret key. If there exists an
assignment, then the secret key can be leaked. The input
assignment, if exists, is the trigger vector for the Trojan.

However, this simple property has several disadvantages.
First, one needs to check for all possible values of the secret
key. If the key has N bits, there exist 2N possible values. For
large N (say 100), a defender cannot check for all possible
values. Second, instead of leaking the entire key, an attacker
may leak only its subset. If the key has N bits, there exist 2N
subsets. Thus, it is computationally infeasible check for the
leakage of all possible subsets for large N.

Example 2: Consider the Trojan in AES-T100 in the Trust-
Hub benchmark suite . This Trojan leaks only the least
significant 8 bits of the secret key. The initial property will
not detect this Trojan as its most significant 120 bits are not
leaked. If one modifies the initial property to check for the
leakage of subset of the key bits, there exist 2128 possible
subsets, making it computationally infeasible to check for all
possible subsets.

B. Refinement 1: Check for leakage of a subset of the
secret key

 ∃ i ∊ I, sx ∊ SN-1 D ∣= (s0 == o) (2)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 637

Fig. 2: AES design with a hardware Trojan. The Trojan leaks
the least significant 8 bits of the secret key through the load
output. One needs to apply four pre-selected plaintexts (1
through 4) to trigger the Trojan. Once the Trojan is triggered,
the key is XORed with a pre-defined constant. Otherwise, the
key is XORed with the contents of a linear feedback shift
register (LFSR). Refinement 1 (Equation 3) checks for a
Trojan which leaks a target bit (bit s0) of the secret key.
While checking for this property, the BMC will assign values
to the other bits of the secret key and the inputs such that
this property is satisfied.

If there exists an assignment, then the property finds a
Trojan. By targeting the individual key bits, instead of the
subset of the key bits, the number of properties checked by
the defender reduces from 2N to N for an N-bit key.
Furthermore, only two possible values — logic 0 and 1 —
can be assigned to the target bit s0. Thus, one needs to check
for 2xN possible values and not 2N values.

C. Refinement 2: Check for leakage in the presence of a
multiple clock cycle trigger

There exist Trojans whose trigger vector arrives over
multiple clock cycles. The initial property and refinement
1 cannot detect such Trojans.

Example 3: Consider the Trojan in AES-T800 in the
Trust-hub benchmark suite shown in Figure 2. The
Trojan leaks the least significant eight bits of the secret key
through the load output. One needs to apply four pre-
selected plaintexts (1 through 4) consecutively to trigger the
Trojan. The Trojan will not be triggered if these plaintexts do
not arrive in sequence. Once the Trojan is triggered, the key
is XORed with a pre-defined constant. Otherwise, the key is
XORed with the contents of a linear feedback shift register
(LFSR).

To detect such Trojans, one needs to determine the
assignments to the input over multiple clock cycles.
Following refined property 2 (Equation 4) uses BMC. BMC
unrolls the design for multiple clock cycles and tries to find a

set of input assignments over those clock cycles that violates
this property.

 ∃ i ∊ I ,S x∊ SN-1 ∍ D ∣= (s0 == o) (3)

Example 4: In the case of AES-T800, if the design is
unrolled for at least four clock cycles, the BMC can find the
four plaintexts that triggers the Trojan.

D. Final property

A Trojan may not necessarily leak a key bit through an
output port. A Trojan may compute a function of the key bits
and leak the output of that function. An attacker can infer the
key from this output, or, at the least, can gain information
about the key, thereby reducing the number of brute force
attempts in recovering it. For example, an attacker may leak
the AND of two secret bits.

Example 5: Consider the AES-T800. Only when the value in
the LFSR is all 0s, the least significant eight bits of the key are
leaked through the load output. Consequently, it will be
detected by refinement 2. However, when the value in the
LFSR is all 1s, the keys are inverted, and the inverted value is
leaked. Consequently, the Trojan will not be detected.

 To detect such Trojans, one needs to check for the leakage of
all possible functions of secret bits. For an N-bit key, there
are 22n Boolean functions. It is computationally infeasible to
detect the leakage for all possible functions, for large values
of N (say 100). However, since we are checking for the
leakage of individual key bits, there are only four possible
functions for a key bit s: { 1,0,s, ¬s}An attacker cannot get
information about the key bit when the Trojan leaks
constant 1 and 0; he can gain information only when s
and/or :s is leaked. The final property checks if the target
key bit or its compliment leaks constant 1 and 0; he can gain
information only when s and/¬s or s is leaked. The final
property checks if the target key bit or its compliment leaks.

∃i∊I,SN-1∊SN-1∍D∣=(s0==o)∨(¬s==o)∀s0∊{0,1}…(4)

Example 6: In the case of AES-T800, when the least
significantbit of the LFSR is 1, the complement of key bit is
leaked at the load output. Otherwise, the key bit is leaked.
Thus, the final property will detect this Trojan irrespective of
the value in the LFSR.

E. Limitation

We use BMC to execute the G operator. In BMC, the number
of clock cycles to unroll is fixed and is specified by the user.
The simulation complexity increases with the increase in the
number of clock cycles. Hence, one can perform BMC only for
a limited for a number of clock cycles. Let M be the maximum
number of clock cycles for which BMC can be performed. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 638

final property can detect Trojans only if they leak the secret
key in the first M clock cycles. For clock cycles greater than
M, our technique does not guarantee the trust worthiness of
the design. One solution is the SoC integrator restarts the
design once the number of clock cycles exceeds M.

IV. RESULTS

A. Experimental Setup We generated Verilog assertions for
the information leakage property in Section III for the
designs in the Trust-Hub benchmark suite . These assertions
were embedded into the respective designs and provided as
input to the BMC engine of the SMV tool from Cadence. Each
design is unrolled for twelve clock cycles. We used an
Intel(R) Xeon E5-2450L 32 cores CPU with 128GB memory
operating at 1.80GHz to run the simulations. We used only
the benchmarks in which the Trojans leak information and
are triggered by digital inputs. This is because (i) the
technique targets Trojans that leak information and (ii) in
our threat model, the malicious 3PIP vendor has no control
over the design constraints imposed on the SoC by the SoC
integrator.

The first three columns in Table I show the characteristicsof
the Trojans. The Trojans leak either the entire or a subset of
the secret key of AES and RSA. The trigger condition varies
from always on (e.g., AES-T100) to trigger spanning multiple
clock cycles (e.g., AES-T800) to a trigger arriving after a
specific number of clock cycles (e.g., AES-T900).

B. Detection capability

A design is infected with an information-leaking Trojan even
if one bit of the secret key or its compliment is leaked
through an output. Columns 4-8 in Table I shows the
detection capability of the properties. The initial property
does not detect any Trojan as it is computationally infeasible
to enumerate all possible keys.

Refinement 1 detects Trojans that leak only some of the bits
of the secret key. However, it does not detect the Trojans in
AES-T800, AES-T1100, AES-T2000, and RSA-T300, because
the trigger for these Trojans arrives over multiple clock
cycles. AES-T900 and AES-T1200 designs are special cases.

In these designs, the Trojan is triggered after 2128 -1 clock
cycles. The Trojans consist of a 128-bit counter to count the
number of clock cycles. To generate a counterexample that
violates refinement 1, SMV initializes all the flip-flops of this
counter to 1, thereby forcing the value of 2128 -1. This
triggers the Trojan, thereby leaking a part of the secret key.

Refinement 2 and final property detect Trojans whose
trigger vectors arrive over multiple clock cycles. All Trojans
were detected by these two properties. The final property
additionally considers the leakage of a key bit or its
complement.
The technique is oblivious to the structure of the Trojan. For
example, AES-T600 leaks the key through an inverter, while
AES-T700 leaks the key through an XOR-gate where the
other input of the XOR gate is fed by an LFSR.
BMCbasedformal verification detects both these Trojans by
setting the plaintext (and LFSR seed) to an appropriate value
that triggers the Trojan. The technique is also independent of
the underlying algorithm; it detects Trojans in both AES and
RSA.

The last two columns in Table I show the memory usage and
the time taken. The memory usage is high because BMC
makes multiple copies of the design for the number of clock
cycles unrolled. However, the memory usage is within the
limits of a modern processor, thus making it feasible to check
for several hundred clock cycles. Furthermore, all the
Trojans were detected within 100 seconds. Checking for the
final property did not result in any falsenegatives as it
detected all the Trojans. To check for false positives, we
checked for secret key leakage on Trojan-free AES and RSA
designs from the same benchmark suite. Our technique did
not flag these designs as Trojan-infected.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 639

TABLE I: Detection capability of the properties against the Trojans in Trust-Hub benchmark suite . The number within

parentheses in the trigger condition column indicates the number of clock cycles.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 640

C. Number of clock cycles for which the property is
checked For the designs in the Trust-Hub benchmark suite,
the maximum number of clock cycles over which the trigger
vectors arrive is four. Since we performed BMC for 12 clock
cycles, we were able to detect the Trojans. However, if one
performs the BMC for only 3 clock cycles, then Trojans in
AES-T800, AES-T1100, AES-T2000 would not be detected.
Hence, it is necessary to perform BMC for the maximum
possible number of clock cycles.

 Table II shows the maximum number of clock cycles for
which SMV can unroll a design and check for the final
property. For this experiment, we set the maximum memory
usage to be 16GB. In case of AES designs, one can unroll for
more than thousand clock cycles. However, in case of RSA
designs, one can unroll for only a few hundred clockcycles.
This is because memory usage of the Cadence SMVtool
increases with the increase in state variables. RSA designs
have more state variables than AES designs. Nevertheless, all
the Trojans were detected.

If these designs do not have Trojans, we guarantee the
trustworthiness of the designs for the number of clock cycles
unrolled. Beyond this, we do not offer any security
guarantees. To be prudent, the SoC integrator has to reset
the design.

TABLE II: Maximum number of clock cycles for which the
information-leakage property is checked once the number of
clock cycles exceeds this value. Sincewe unrolled the design
for several hundred clock cycles, there to grater needs to
reset it every several hundred clock cycles, leading to a
throughput penalty of less than 1%.

D. Number of leakage paths

A Trojan can leak a key bit through multiple output ports.
One may classify a design as Trojan-infected if atleast one of
the leakage paths is detected. However, detecting all these
leakage paths demonstrate the effectiveness of averification
technique.

TABLE II

Name

 Direct
Complim
ent

Max. #
of

Memor
y Time

Max. #
of

Memo
ry Time

clock
cycles (GB) (s)

clock
cycles (GB) (s)

AES-T100 4400 10.65 379.12 2535 12.32 155.06

AES-T200 7605 11.83 174.61 2251 13.79 298.33

AES-T600 1042 12.45 151.75 1042 12.45 152.41

AES-T700 1203 10.56 198.15 815 11.18 276.98

AES-T800 1483 13.16 155.48 1583 13.52 160.36

AES-T900 740 13.20 1368.93 3540 14.18 169.36

AES-
T1000 1640 12.26 152.52 1640 12.26 153.51

AES-
T1100 1655 13.76 162.0 1655 13.76 161.85

AES-
T1200 870 13.49 1094.01 840 13.77

1385.6
4

AES-
T2000 970 12.46 180.16 1002 12.80 165.5

RSA-T100 220 13.49 1247.77 - - -

RSA-T300 160 6.45 394.99 - - -

Figure 3 shows the number of leakage paths detected for
both the key bits and their compliments over multiple clock
cycles. For most designs, the number of leakage paths is 64,
because the least significant 8 bits of the key are leaked
through 8 output ports. In case of AES-T600 and AEST2000,
the number of leakage paths is 1280, as the 128-bit key is
leaked through 10 output ports. Most of the leakage paths
are detected in the second clock cycle. This is because the
latency of the Trojan in these designs is two clock cycles.

Our technique detects all the direct leakage paths reported
in the documentation of the benchmark designs. While the
documentation does not report the paths for complimentary
leakage, our technique detects them.

Fig. 3: Number of leakage paths across different clock cycles

V. CONCLUSION

We proposed a property to detect information-leaking
Trojans, provided the information is leaked within the
maximum number of clock cycles for which the design is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 641

unrolled. We do not offer any security guarantees for clock
cycles greater than this number.

Hence, a designer has to reset the design when the number
of clock cycles hits this limit, thereby reducing the
throughput. However, as seen in Table II, one can unroll the
designs for more than hundred clock cycles, leading to a
throughput reduction of less than 1%. Nevertheless, one can
increase the number of clock cycles for which the design is
checked by using an automatic test pattern generator
(ATPG), instead of a BMC, to check for the property. This is
because an ATPG consumes less memory than a BMC. One
can develop similar properties to detect Trojans that corrupt
registers that hold critical information and Trojans that
change the functionality of a design.

REFERENCES

[1]M. Tehranipoor and F. Koushanfar, “A Survey of Hardware
Trojan Taxonomy and Detection,” IEEE Design and Test of
Computers, vol. 27, no. 1, pp. 10–25, 2010.
[2]“Defense Science Board (DSB) study on High
PerformanceMicrochip Supply,”
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf,
2005.
[3]S. Bhunia, M. Hsiao, M. Banga, and S. Narasimhan,
“Hardware Trojan Attacks: Threat Analysis and
Countermeasures,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1229–1247, 2014.
[4]X. Zhang and M. Tehranipoor, “Case study: Detecting
hardware Tro-jans in third-party digital IP cores,” IEEE
Intentional Symposium on Hardware Oriented Security and
Trust, pp. 67–70, 2011.
[5]M. Banga and M. Hsiao, “Trusted RTL: Trojan detection
methodology in pre-silicon designs,” IEEE International
Symposium on Hardware-Oriented Security and Trust, pp.
56–59, 2010.
[6]J. Jou and C. J. Liu, “Coverage analysis techniques for HDL
design validation,” IEEE Asia Pacific Conference on Chip
Design Languages, 1999.

BIOGRAPHIES

Ms SUDHAMAYI B is presently working as a Assistant
Professor in ECE department.Nimra Institute of Engineering
& Technology, Vijayawada. she has obtained M.tech from
JNTUK.s he has published several research papers in various
national and international Journals .

Ms MANISHA P is a Postgraduate student of Nimra Institute
of Engineering & Technology, Vijayawada. she is presently
pursuing her M.Tech., degree from Nimra Institute of
Engineering & Technology Affiliated to JNTU, Kakinada. she
has obtained B.Tech., degree from Sana college of
Engineering & Technology Affiliated to JNTU, Hydeabad in
the year 2014.

Ms KIRANMAI MOKA is a Postgraduate student of Nimra
Institute of Engineering & Technology, Vijayawada. she is
presently pursuing her M.Tech., degree from Nimra Institute
of Engineering & Technology Affiliated to JNTU, Kakinada.
she has obtained B.Tech., degree from Nova Institute of
Engineering & Technology Affiliated to JNTU, Kakinada in the
year 2013.

