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Abstract - Globalization of the system-on-chip (SoC) design 
flow has created opportunities for rogue intellectual property 
(IP) vendors to insert malicious circuits (a.k.a. hardware 
Trojans) into their IPs. We propose to formally verify third 
party IPs (3PIPs) for unauthorized hird party’s. We validate 
our technique using Trojan benchmarks from the Trust-Hub 
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1.INTRODUCTION :  
 
A. Motivation 
 
Fabless System-on-a-Chip (SoC) designers integrate 
thirdpartyIntellectual Property (3PIP) cores with in-house IP 
coresto design SoCs. They outsource the fabrication and test 
phases.3PIP vendors, foundries and test companies are 
distributedworldwide. An SoC designer uses these services 
to meet the tight time-to-market deadlines and to reduce the 
design, fabrication, and test costs.  
 
Not with standing its benefits, globalization of the SoC design 
flow has created opportunities for rogue elements within the 
supply chain to corrupt the ICs Rogue elements in a foundry 
can alter a design or include malicious circuits(called 
hardware Trojans) during fabrication. Similarly, rogue 
elements in the 3PIP companies can insert Trojans in theirIP. 
The inserted Trojans may be conditionally triggered or 
always on. When triggered, a Trojan may result ina deadlock 
or failure of the system (overt attack), or create a backdoor 
allowing the attacker to gain remote access to the system 
(covert attack) . 
 
To build a trustworthy SoC design, it is necessary to ensure 
the trustworthiness of the 3PIPs. However since this is not 
always possible, the SoC integrator should ensure that all the 
security vulnerabilities in any of the 3PIPs are detected or 
their effects muted before they damage the system. 
 
B. Previous work 
 
Trojan-detection techniques in 3PIPs can be broadly 
classified into code/structural analysis and formal 
verification techniques. 
 
Code/structural analysis techniques. Since 3PIPs are 
typically delivered as Register Transfer Level (RTL) VHDL / 
Verilog codes, code coverage analysis is performed on RTL 

codes to identify suspicious signals that may be a part of a 
Trojan . Even 100% coverage of the RTL code in a design 
does not guarantee that it is fault-free . Hence, code coverage 
analysis does not guarantee its trustworthiness. Alternately, 
an SoC integrator may automatically analyze the 3PIP code 
and mark suspicious signals using controllability and 
reachability values of signals . FANCI marks gates with low 
activation probability as suspicious . VeriTrust marks gates 
that are not driven by functional inputs as suspicious . The 
implicit assumption here is that those gates are driven by 
Trojans, as they do not perform any computation on 
functional inputs. The SoC integrator then manually analyzes 
the small number of suspicious gates to determine if they are 
part of a Trojan. 
 
DeTrust exploits the limitations of FANCI and Veri Trustto 
design Trojans that bypass them . To bypass FANCI,DeTrust 
designs Trojans whose trigger vector arrives over multiple 
clock cycles. If the probability of activating a signal is below a 
pre-determined threshold, FANCI marks it as suspicious. For 
example, if a 128-bit trigger arrives in one clock cycle, the 
probability of activating the trigger signal is 2-128, and FANCI 
marks it as suspicious. However, DeTrust makes the trigger 
signals arrive as four-bit nibbles over 32 clock cycles. Now, 
FANCI computes the probability of activating the trigger 
signal to be 2-4. Since this value is significantly higher, FANCI 
does not mark this signal as suspicious. To bypass VeriTrust, 
DeTrust ensures that each gate in the Trojan is driven by a 
subset of functional inputs.The limitations of code/structural 
analysis techniques are: (1) they do not guarantee Trojan 
detection [10], (2) they burden the designer with manual 
analysis, and (3) they analyze only the combinational parts 
of the design. 
 
Formal verification techniques. An SoC integrator and a 
3PIP vendor can agree upon a pre-defined set of security 
properties that the IP should satisfy . The SoC integrator can 
check the 3PIP for these properties. To check if a design 
honors these properties, one converts the target design into 
a proof checking format (for example, Coq). This technique 
has been demonstrated to detect data leakage  and malicious 
modifications to registers . 
 
The limitations of this technique are: (1) One can check if a 
design satisfies pre-defined properties, but not if the design 
has additional vulnerabilities while satisfying these 
properties . (2) Lack of automation to convert VHDL/Verilog 
to Coq format. (3) The VHDL/Verilog and Coq 
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representations of the target design may not be equivalent; If 
a Coq representation of a design is considered trustworthy, it 
does not necessarily mean that the corresponding 
VHDL/Verilog representation is trustworthy. 
 
Jasper uses a proprietary “taint propagation” technology to 
identify if secret data can be leaked by exploiting design bugs  
However, it does not target Trojans. The authors of  
identified and verified three security properties of SoCs 
using taint-propagation techniques: (1) the firmware should 
not read the hardware encryption keys, (2) the firmware 
should not modify the access privileges of memory and 
input/outputs, and (3) the host software should not modify 
the SoC security monitor.  However, these  techniques target 
unintentional design bugs, but not Trojans. 
 
 
key(127:0) 
 
key(127:0) 
 
 
 
                                                                                       output(127:0)  
 

Fig. 1: AES design with a hardware Trojan. The Trojan 
leaks the secret key through the output when the 128-bit 

plaintext is all 1’s. 
 
The Trojan components are shown in red. 
Recently, formal verification techniques to detect corruption 
of critical registers by Trojans have been proposed . 
However, these techniques do not detect Trojans that cause 
information leakage. 
 
C.Contribution: Formally verifying 3PIPs for the presence 
of information leaking trojans 
 
We propose to detect Trojans in 3PIP that leak sensitive 
information (cryptographic key, plaintext, or intermediate 
computation). 
 
We use model checking to detect Trojans. The input to the 
model checker is the target property to be checked and a 
formal description of the design in temporal logic, which is a 
representation of the design as a sequence of states. The 
output of the model checker is a set of states which satisfy 
the given property, or a witness of a sequence which violates 
the property. The property that we will check is “does the 
design leak any sensitive information?” If a design violates 
this property, it is infected with information-leaking Trojans; 
otherwise, it is free from such Trojans. In addition to 
identifying Trojan infected designs, the model checker 
generates the witness (set of inputs over several clock 
cycles) that triggers the Trojan. 
 

 
The advantages of this technique are: (1) It can be used on 
any (cryptographic) design; (2) It guarantees detection of 
information leaking Trojans and produces the trigger 
condition for the Trojan, if the 3PIP has one; (3) It can be 
used in conjunction with other property-based Trojan 
detection techniques . 
 
D. Motivational example 
 
A Trojan which leaks the critical data stored in register R, 
through an output port O is formally defined as 
 
   ∃ itrigger   ∊  I  ∍  D ∣= (R == O) ‖ (R == ¬O) ∀r ∊R 
 
where I is the set of possible input patterns and itrigger is the 
set of input pattern that triggers the Trojan, and r is the 
value of the register R. D is the design. On applying itrigger, the 
contents of register R is leaked through the output port O. 
 
Example 1: Consider the AES design shown in Figure 1. The 
Trojan leaks the secret key through the output when the 
128- bit plaintext is all 1s. Here, the Trojan maps each bit of 
the key to the corresponding bit of the output. Based on the 
trigger, a Trojan can be (i) always on (i.e. no trigger), (ii) 
triggered by only current inputs, (iii) triggered after a 
specific number of clock cycles, and (iv) triggered by inputs 
arriving over multiple clock cycles . FANCI and VeriTrust 
deal with Trojans of type (i) and (ii). DeTrust designed 
Trojans of type (iii) and (iv) to defeat them. Our technique 
can detect data-corrupting Trojans of all types. 
 
E. Organization of the paper 
 
The rest of the paper is organized as follows: Section II 
describes the threat model, prior work, and background on 
model checking. Section III derives properties to detect 
Trojans that leak information. Results are provided in 
Section IV. Section V concludes the paper. 
 
II. THREAT MODEL AND BACKGROUND 
 
A. Threat model 
 
A 3PIP vendor or a rogue element in the 3PIP vendor 
company is the attacker. The attacker seeks to subvert the 
security of the SoC that is using his IP. He introduces 
hardware Trojans in the IP to corrupt critical data. He only 
inserts Trojans whose trigger and payload characteristics 
are “digital.” He cannot design a Trojan that depends on the 
physical characteristics of the SoC as these characteristics 
are determined by the design-synthesis constraints; the 3PIP 
vendor has no control over the design constraints imposed 
on the SoC by the SoC integrator. If a 3PIP has “non-volatile” 
components, a designercan identify them as he needs to 
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Is the 128-bit plaintext all 1’s? 
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manufacture them; thus, we consider Trojans  that do no use 
non-volatile components. 
 
The SoC integrator is the defender. His objective is to detect 
Trojans, if any, in the 3PIP. We assume that the defender has 
access to the RTL/gate-level netlist of the 3PIP and hence 
can verify its function. Furthermore, he knows the 
functionality of the input and output ports of the 3PIP from 
the specification. 
 
Protocol to verify trustworthiness of an IP. We follow the 
protocol outlined in below. The SoC integrator and the IP 
vendor agree upon a set of security properties for the design. 
For instance, one property can check for the valid ways to 
update a stack pointer in a processor. An SoC integrator 
performs functional verification. The attacker in the IP 
design house can insert Trojans that corrupt critical data, 
while satisfying the agreed upon security properties, and 
passes functional verification. The task of the SoC integrator 
is twofold: (1) check if the design satisfies the agreed upon 
security properties, and (2) check if the design has Trojans 
that corrupt data without violating these properties. 
 
B. Formal methods in hardware design 
 
Formal verification is an approach to ensure that 
safetycritical components in a design are exhaustively tested 
for correctness . Quality criteria may be specified using 
properties described in temporal logic and its variations . In 
linear time temporal logic (LTL), the notion of time is that of 
a linearly ordered set (this can be thought of as a possible 
sequence of states). 
 
Model checking is the process of analyzing a design forthe 
validity of properties stated in temporal logic. A model 
checker takes the Verilog code along with the property 
written as a Verilog assertion and derives a Boolean 
satifiability (SAT) formulation for validating/invalidating the 
property. This SAT formulation is fed to a SAT engine, which 
then searches for an input assignment that violates the 
property . 
 
Bounded model checking. In practice, designers know the 
bounds on the number of steps (clock cycles) with in which a 
property should hold. In Bounded Model Checking (BMC), a 
property is determined to hold for at least a finite sequence 
of state transitions. The Boolean formula for 
validating/invalidating the target property is given to a SAT 
engine, and if a satisfying assignment is observed within T 
clock cycles, that assignment is a witness against the target 
property. We develop properties to detect Trojans that 
corrupt critical data and verify the target design for 
satisfaction of these properties using a bounded model 
checker. 
 
C. Formal methods in hardware security 

 
SAT-based techniques can be used to detect fault attacks . 
Satisfiability Modulo Theory-based techniques can evaluate 
the strength of software countermeasures against side 
channel attacks . These techniques do not target Trojans. 
 
III.FORMALLY DETECTING INFORMATION LEAKAGE 
 
A. A first attempt at a property to detect information 
leakage 
 
     ∃ i ∊  I  ∍  D ∣= (s == o)                   (1) 
 
To detect an information-leaking Trojan, the property should 
check if there exists an input assignment such that the secret 
is mapped to an output port for all possible values of the 
secret. Equation (2) lists this property. The SAT engine 
searches for an input assignment that violates the property 
in the target design. In this case, the SAT engine searches for 
an input assignment that leaks the secret, s, to the output o, 
for all possible values (S) of the secret key. If there exists an 
assignment, then the secret key can be leaked. The input 
assignment, if exists, is the trigger vector for the Trojan. 
 
However, this simple property has several disadvantages. 
First, one needs to check for all possible values of the secret 
key. If the key has N bits, there exist 2N possible values. For 
large N (say 100), a defender cannot check for all possible 
values. Second, instead of leaking the entire key, an attacker 
may leak only its subset. If the key has N bits, there exist 2N 
subsets. Thus, it is computationally infeasible check for the 
leakage of all possible subsets for large N. 
 
Example 2: Consider the Trojan in AES-T100 in the Trust-
Hub benchmark suite . This Trojan leaks only the least 
significant 8 bits of the secret key. The initial property will 
not detect this Trojan as its most significant 120 bits are not 
leaked. If one modifies the initial property to check for the 
leakage of subset of the key bits, there exist 2128 possible 
subsets, making it computationally infeasible to check for all 
possible subsets. 
 
B. Refinement 1: Check for leakage of a subset of the 
secret key 
                        
  ∃  i  ∊ I, sx  ∊  SN-1  D ∣= (s0 == o)      (2) 
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Fig. 2: AES design with a hardware Trojan. The Trojan leaks 
the least significant 8 bits of the secret key through the load 
output. One needs to apply four pre-selected plaintexts (1 
through 4) to trigger the Trojan. Once the Trojan is triggered, 
the key is XORed with a pre-defined constant. Otherwise, the 
key is XORed with the contents of a linear feedback shift 
register (LFSR). Refinement 1 (Equation 3) checks for a 
Trojan which leaks a target bit (bit s0) of the secret key. 
While checking for this property, the BMC will assign values 
to the other bits of the secret key and the inputs such that 
this property is satisfied.  
 
If there exists an assignment, then the property finds a 
Trojan. By targeting the individual key bits, instead of the 
subset of the key bits, the number of properties checked by 
the defender reduces from 2N to N for an N-bit key. 
Furthermore, only two possible values — logic 0 and 1 — 
can be assigned to the target bit s0. Thus, one needs to check 
for 2xN possible values and not 2N values. 
 
C. Refinement 2: Check for leakage in the presence of a 
multiple clock cycle trigger 
 
There exist Trojans whose trigger vector arrives over 
multiple clock cycles. The initial property and refinement 
1 cannot detect such Trojans. 
 
Example 3: Consider the Trojan in AES-T800 in the 
Trust-hub benchmark suite shown in Figure 2. The 
Trojan leaks the least significant eight bits of the secret key 
through the load output. One needs to apply four pre-
selected plaintexts (1 through 4) consecutively to trigger the 
Trojan. The Trojan will not be triggered if these plaintexts do 
not arrive in sequence. Once the Trojan is triggered, the key 
is XORed with a pre-defined constant. Otherwise, the key is 
XORed with the contents of a linear feedback shift register 
(LFSR). 
 
To detect such Trojans, one needs to determine the 
assignments to the input over multiple clock cycles. 
Following refined property 2 (Equation 4) uses BMC. BMC 
unrolls the design for multiple clock cycles and tries to find a 

set of input assignments over those clock cycles that violates 
this property. 
 
     ∃ i ∊  I  ,S x∊ SN-1  ∍  D ∣= (s0 == o)        (3) 
 
Example 4: In the case of AES-T800, if the design is 
unrolled for at least four clock cycles, the BMC can find the 
four plaintexts that triggers the Trojan. 
 
D. Final property 
 
A Trojan may not necessarily leak a key bit through an 
output port. A Trojan may compute a function of the key bits 
and leak the output of that function. An attacker can infer the 
key from this output, or, at the least, can gain information 
about the key, thereby reducing the number of brute force 
attempts in recovering it. For example, an attacker may leak 
the AND of two secret bits. 
 
Example 5: Consider the AES-T800. Only when the value in 
the LFSR is all 0s, the least significant eight bits of the key are 
leaked through the load output. Consequently, it will be 
detected by refinement 2. However, when the value in the 
LFSR is all 1s, the keys are inverted, and the inverted value is 
leaked. Consequently, the Trojan will not be detected. 
 
 To detect such Trojans, one needs to check for the leakage of 
all possible functions of secret bits. For an N-bit key, there 
are  22n Boolean functions. It is computationally infeasible to 
detect the leakage for all possible functions, for large values 
of N (say 100). However, since we are checking for the 
leakage of individual key bits, there are only four possible 
functions for a key bit s: { 1,0,s, ¬s}An attacker cannot get 
information about the key bit when the Trojan leaks 
constant 1 and 0; he can gain information only when s 
and/or :s is leaked. The final property checks if the target 
key bit or its compliment leaks constant 1 and 0; he can gain 
information only when s and/¬s or s is leaked. The final 
property checks if the target key bit or its compliment leaks. 
 
∃i∊I,SN-1∊SN-1∍D∣=(s0==o)∨(¬s==o)∀s0∊{0,1}…(4)             
 
Example 6: In the case of AES-T800, when the least 
significantbit of the LFSR is 1, the complement of key bit is 
leaked at the load output. Otherwise, the key bit is leaked. 
Thus, the final property will detect this Trojan irrespective of 
the value in the LFSR. 
 
E. Limitation 
 
We use BMC to execute the G operator. In BMC, the number 
of clock cycles to unroll is fixed and is specified by the user. 
The simulation complexity increases with the increase in the 
number of clock cycles. Hence, one can perform BMC only for 
a limited for a number of clock cycles. Let M be the maximum 
number of clock cycles for which BMC can be performed. The 
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final property can detect Trojans only if they leak the secret 
key in the first M clock cycles. For clock cycles greater than 
M, our technique does not guarantee the trust worthiness of 
the design. One solution is the SoC integrator restarts the 
design once the number of clock cycles exceeds M. 
 
IV. RESULTS 
 
A. Experimental Setup We generated Verilog assertions for 
the information leakage property in Section III for the 
designs in the Trust-Hub benchmark suite . These assertions 
were embedded into the respective designs and provided as 
input to the BMC engine of the SMV tool from Cadence. Each 
design is unrolled for twelve clock cycles. We used an 
Intel(R) Xeon E5-2450L 32 cores CPU with 128GB memory 
operating at 1.80GHz to run the simulations. We used only 
the benchmarks in which the Trojans leak information and 
are triggered by digital inputs. This is because (i) the 
technique targets Trojans that leak information and (ii) in 
our threat model, the malicious 3PIP vendor has no control 
over the design constraints imposed on the SoC by the SoC 
integrator. 
 
The first three columns in Table I show the characteristicsof 
the Trojans. The Trojans leak either the entire or a subset  of 
the secret key of AES and RSA. The trigger condition varies 
from always on (e.g., AES-T100) to trigger spanning multiple 
clock cycles (e.g., AES-T800) to a trigger arriving after a 
specific number of clock cycles (e.g., AES-T900). 
 
B. Detection capability 
 
A design is infected with an information-leaking Trojan even 
if one bit of the secret key or its compliment is leaked 
through an output. Columns 4-8 in Table I shows the 
detection capability of the properties. The initial property 
does not detect any Trojan as it is computationally infeasible 
to enumerate all possible keys. 
 
Refinement 1 detects Trojans that leak only some of the bits 
of the secret key. However, it does not detect the Trojans in 
AES-T800, AES-T1100, AES-T2000, and RSA-T300, because 
the trigger for these Trojans arrives over multiple clock 
cycles. AES-T900 and AES-T1200 designs are special cases. 

In these designs, the Trojan is triggered after 2128 -1 clock 
cycles. The Trojans consist of a 128-bit counter to count the 
number of clock cycles. To generate a counterexample that 
violates refinement 1, SMV initializes all the flip-flops of this 
counter to 1, thereby forcing the value of 2128 -1. This 
triggers the Trojan, thereby leaking a part of the secret key.  
 
Refinement 2 and final property detect Trojans whose 
trigger vectors arrive over multiple clock cycles. All Trojans 
were detected by these two properties. The final property 
additionally considers the leakage of a key bit or its 
complement.  
The technique is oblivious to the structure of the Trojan. For 
example, AES-T600 leaks the key through an inverter, while 
AES-T700 leaks the key through an XOR-gate where the 
other input of the XOR gate is fed by an LFSR. 
BMCbasedformal verification detects both these Trojans by 
setting the plaintext (and LFSR seed) to an appropriate value 
that triggers the Trojan. The technique is also independent of 
the underlying algorithm; it detects Trojans in both AES and 
RSA. 
 
The last two columns in Table I show the memory usage and 
the time taken. The memory usage is high because BMC 
makes multiple copies of the design for the number of clock 
cycles unrolled. However, the memory usage is within the 
limits of a modern processor, thus making it feasible to check 
for several hundred clock cycles. Furthermore, all the 
Trojans were detected within 100 seconds. Checking for the 
final property did not result in any falsenegatives as it 
detected all the Trojans. To check for false positives, we 
checked for secret key leakage on Trojan-free AES and RSA 
designs from the same benchmark suite. Our technique did 
not flag these designs as Trojan-infected. 
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TABLE I: Detection capability of the properties against the Trojans in Trust-Hub benchmark suite . The number within 

parentheses in the trigger condition column indicates the number of clock cycles. 
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C. Number of clock cycles for which the property is 
checked For the designs in the Trust-Hub benchmark suite, 
the maximum number of clock cycles over which the trigger 
vectors arrive is four. Since we performed BMC for 12 clock 
cycles, we were able to detect the Trojans. However, if one 
performs the BMC for only 3 clock cycles, then Trojans in 
AES-T800, AES-T1100, AES-T2000 would not be detected. 
Hence, it is necessary to perform BMC for the maximum 
possible number of clock cycles. 
 
 Table II shows the maximum number of clock cycles for 
which SMV can unroll a design and check for the final 
property. For this experiment, we set the maximum memory 
usage to be 16GB. In case of AES designs, one can unroll for 
more than thousand clock cycles. However, in case of RSA 
designs, one can unroll for only a few hundred clockcycles. 
This is because memory usage of the Cadence SMVtool 
increases with the increase in state variables. RSA designs 
have more state variables than AES designs. Nevertheless, all 
the Trojans were detected. 
 
If these designs do not have Trojans, we guarantee the 
trustworthiness of the designs for the number of clock cycles 
unrolled. Beyond this, we do not offer any security 
guarantees. To be prudent, the SoC integrator has to reset 
the design. 
 
TABLE II: Maximum number of clock cycles for which the 
information-leakage property is checked once the number of 
clock cycles exceeds this value. Sincewe unrolled the design 
for several hundred clock cycles, there to grater needs to 
reset it every several hundred clock cycles, leading to a 
throughput penalty of less than 1%. 
 
D. Number of leakage paths 
 
A Trojan can leak a key bit through multiple output ports. 
One may classify a design as Trojan-infected if atleast one  of 
the leakage paths is detected. However, detecting all  these 
leakage paths demonstrate the effectiveness of averification 
technique. 
 

TABLE II 
 

Name 

 Direct   
Complim
ent  

Max. # 
of 

Memor
y Time 

Max. # 
of  

Memo
ry Time 

 
clock 
cycles (GB) (s) 

clock 
cycles  (GB) (s) 

AES-T100 4400 10.65 379.12 2535  12.32 155.06 

AES-T200 7605 11.83 174.61 2251  13.79 298.33 

AES-T600 1042 12.45 151.75 1042  12.45 152.41 

AES-T700 1203 10.56 198.15 815  11.18 276.98 

AES-T800 1483 13.16 155.48 1583  13.52 160.36 

AES-T900 740 13.20 1368.93 3540  14.18 169.36 

AES-
T1000 1640 12.26 152.52 1640  12.26 153.51 

AES-
T1100 1655 13.76 162.0 1655  13.76 161.85 

AES-
T1200 870 13.49 1094.01 840  13.77 

1385.6
4 

AES-
T2000 970 12.46 180.16 1002  12.80 165.5 

RSA-T100 220 13.49 1247.77 -  - - 

RSA-T300 160 6.45 394.99 -  - - 

 
Figure 3 shows the number of leakage paths detected for 
both the key bits and their compliments over multiple clock 
cycles. For most designs, the number of leakage paths is 64, 
because the least significant 8 bits of the key are leaked 
through 8 output ports. In case of AES-T600 and AEST2000, 
the number of leakage paths is 1280, as the 128-bit key is 
leaked through 10 output ports. Most of the leakage paths 
are detected in the second clock cycle. This is because the 
latency of the Trojan in these designs is two clock cycles. 
 
Our technique detects all the direct leakage paths reported 
in the documentation of the benchmark designs. While the 
documentation does not report the paths for complimentary 
leakage, our technique detects them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Number of leakage paths across different clock cycles 
 
V. CONCLUSION 
 
We proposed a property to detect information-leaking 
Trojans, provided the information is leaked within the 
maximum number of clock cycles for which the design is 
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unrolled. We do not offer any security guarantees for clock 
cycles greater than this number.  
 
Hence, a designer has to reset the design when the number 
of clock cycles hits this limit, thereby reducing the 
throughput. However, as seen in Table II, one can unroll the 
designs for more than hundred clock cycles, leading to a 
throughput reduction of less than 1%. Nevertheless, one can 
increase the number of clock cycles for which the design is 
checked by using an automatic test pattern generator 
(ATPG), instead of a BMC, to check for the property. This is 
because an ATPG consumes less memory than a BMC. One 
can develop similar properties to detect Trojans that corrupt 
registers that hold critical information and Trojans that 
change the functionality of a design. 
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