
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 379

SCS-MCSA- Based Architecture for Montgomery Modular Multiplication

Pramoda B R1, Shubha B2, Veerabhadrappa S T3

1M Tech Student, Dept. of ECE, JSSATE, Bengaluru, Karnataka, India
2Assistant Professor, Dept. of ECE, JSSATE, Bengaluru, Karnataka, India
3Associate Professor, Dept. of ECE, JSSATE, Bengaluru, Karnataka, India

---***---
Abstract - Modular multiplication is one of the important
operation of many cryptographic algorithms. Montgomery
modular multiplication (MMM) method is carried out in this
work to solve the modular multiplication problems. This
method enables real time security operations to perform faster
way. The Montgomery multiplier will optimize the existing
Montgomery multiplier by using Modified Carry Save Adder
(MCSA) in place of configurable carry save adder and boosts
the performance. In a typical Montgomery multiplier
configurable carry save adder is repeatedly used for operand
pre computation and format conversion from carry save
format to binary format. Hence by making this pre
computation operation better by using a modified carry save
adder in place of configurable carry save adder leads to low
hardware cost and short critical path delay. The Montgomery
modular multiplication algorithm is implemented using Xilinx
tool and we obtain programming results.

Key Words: Carry Save Adder, Low cost architecture,
Montgomery Modular multiplication, Configurable CSA,
Public-Key cryptosystem.

1. INTRODUCTION

Modular multiplication is core operation of many

cryptographic operation. So any improvement in this process
of modular multiplication will increase the operation
efficiency of the entire process. There are many algorithms
proposed (eg: window MM, REDC, Montgomery MM, RSA) to
improve the efficiency of this modular multiplication. The
Montgomery's algorithm have been used in order to increase
the efficiency of the modular multiplication operation.
Montgomery achieves the quotient calculation just by shift
operations and using only least significant digits of operands
to produce S = A × B × R−1 (mod N), where N is the k-bit
modulus, R−1 is the inverse of R modulo N, and R = 2k mod N
[1]. The single shift operation in Montgomery Modular
multiplication algorithm will reduce the time complexity and
results in faster encryption and decryption. If the operands
are larger value there would be longer carry propagation. So
by having a methods like Full Carry Save (FCS) [2] and Semi
Carry Save (SCS) [3, 4] provides the advantage of faster carry
calculation leading to time complexity reduction of whole
algorithm. The Semi Carry Save Configurable Carry Save
Adder Based Montgomery Modular Multiplication is
improvement of the semi carry save Montgomery modular
multiplication, it uses one level CSA for operand pre-

computation and format conversion [1]. This CCSA
architecture also achieves smaller area, reduced number of
clock cycle and delay. But this multiplier is better than CCSA
based multiplier. In the following used Montgomery modular
multiplier it is shown that higher throughput could be
achieved by much smaller area-time product (ATP) than
previous Montgomery multipliers.

1.1 Operation of MMM

The Fig-1 shows the semi carry save Montgomery

modular multiplier using a modified carry save adder. That
consists of multipliers (M1, M2, SM3, M4, and M5), D flip
flops, Skip detector, Zero detector and Modified carry save
adder. This system is used to reduce the numbers of clock
cycle and critical path delay.

Fig-1: SCS-MCSA Based Montgomery Modular Multiplier

The variable x (output of SM3) value depends on the

value of select lines Ai and qi (if select lines are “00” then x is
‘0’, “01” then x is N, “10” then x is ‘B’, and “11” then x is D).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 380

Fig-2: Skip Detector

The Fig-2 shows the Skip Detector (Skip_D). The
Skip Detector is comprises with XOR gates, AND gates, a NOR
gate, and 2:1 multiplexers. This produces the qi+1, qi+2 and
skipi+1 signals

The following equations are used find the qi+1, qi+2

and skipi+1, the computation of qi+1 and qi+2 nothing but
Quotient1Pre-computation. For more information please
refer [2].

q i+1 = (SS[i] 1 ⊕ SC[i]1) ⊕ (SS[i]0 ٨ SC[i]0) (1)
q i+2 = (SS[i+2]1 + SC[i+2]0) mod 2

q i+2 = (SS[i]2⊕SC[i]2)⊕(qi∧ˆN2)⊕(SS[i]1∧SC[i]1 (2)

Skipi+1 = ~ (Ai+1 ⋁ qi+1 ⋁ SS [i+1]0)
 = ~ (Ai+1 ⋁ (δ1 ⊕ δ0) ⋁ δ1)
 = ~ (Ai+1 ⋁ δ1 ⋁ δ0)
 = ~ (Ai+1 ⋁ (SS[i] 1 ⊕ SC[i] 1) ⋁ (SS[i] 0 ∧ S[i] 0)) (3)

1.2. Modified Carry save Adder

Fig-3: Modified Carry Save Adder

The modified carry save adder shown in Fig-3. It is a
type of digital adder, used to find the sum of 3 or more (n)
bit numbers in computer micro architecture. Basically carry
are pre-calculated for all possibilities and stored in the
memory, because there is no logic operation occurring to
calculate the carry. So by using this approach we can reduce
the number of clock cycle and operation is also fast.

2. Implementation and Algorithm

Algorithm

 nputs A, B, N (new modulus)
 Output: SS [K+5]

1. B B 3 q 0 A =0; skipi+1=0;
2. (, C 1F C A(B , N , 0);
3. While (SC!=0)
4. (SS,SC)=2H_CSA(SS,SC);
5. D =SS;
6. i= -1; SS[-1]=0; SC[-1]=0;
7. While (i ≤ k +4 {
8. if (A 0 and q =0) x=0;
9. if (A 0 and q 1 x N ;
10. if (A 1 and q 0 x B ;
11. if (A 1 and q 1 x D ;
12. (SS[i+1],SC[i+1])=1F_CSA(SS[i],SC[i],x)>>1;
13. compute qi+1,qi+2,and skipi+1 by (5),(7) and (8);
14. if(skipi+1=1){
15. SS[i+2]=SS[i+1]>>1,SC[i+2]=SC[i+1]>>1;
16. q =qi+2 A =Ai+2; i=i+2;
17. }
18. else{
19. q =qi+1 A =Ai+1; i=i+1;

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 381

20. }
21. }
22. q 0 A =0;
23. while (SC[K+5]!=0)
24. (SS[K+5],SC[K+5]=2H_CSA(SS[K+5],SC[K+5]);
25. Return SS[K+5];

The semi carry save Montgomery modular

multiplication algorithm using single stage modified carry
save adder architecture is used to decrease the essential
clock cycle for finishing single modular multiplication. Steps
from 1 to 5 of this algorithm produce the B and D . The values
of qi+1 and qi+2 should be generated in ith iteration. Where ‘i’ is
the iterative index of MMM and its start from ‘-1’ as a
replacement of zero and initial value of skipi+1, q and A
should be fixed to zero as shown in algorithm. When skipi+1 is

equal to ‘1’, the system skips the unwanted iterations.Step-8
to step-12 is used to select the value of ‘x’ as shown in while
loop of algorithm. By using equation (1), (2) and (3) we
calculate the values of qi+1, qi+2 and skipi+1 (step-13
algorithm). The step-14 to step-20 and step-8 to step-12 can
be carried out simultaneously to select A , q and i.
Montgomery multiplication starts with storing (skipi+1), q
and A in FF and at first resets to 0 as shown in SCS-MM-New
algorithm at step 1 then, D = B + N will be completed through
one-level CCSA architecture. When while loop executes, Skip
Detector (Skip_D) will be not executed and move to skipi+1,
q and A as shown in figure 2. The Skip Detector is comprises
with XOR gates, AND gates, a NOR gate, and 2:1 multiplexers.
This produces the qi+1, qi+2 and skipi+1 signals in the ith

iteration according to equation (1), (2) and (3), and at that
point choose the proper q and A based on skipi+1, and these
values are stored in flip flops at the end of the iteration. If the
value of skipi+1 1s equal to zero, SS_1 and SC_1 are selected
else SS_2 and SC_2 are selected. I.e. one bit right shift
operations in step 12 and step 15 of algorithm are executed
simultaneously in following clock cycle of iteration i.
Additionally, the inputs multiplexer 4 and 5 yields the
correct output SC[i] 2:0 and SS[i] 2:0 by using skipi+1. The
SC[i] 2:0 and SS[i] 2:0 can also be gained from multiplexer 1
and multiplexer 2 but a longer delay is required because
there are 4-to-1 multiplexers. The step 23 and step 24
execute the format conversion, it’s similar to the operand
precomputation as shown in step 3 and step 4 in the
algorithm. At the end SS [K+5] is the output of the multiplier
when SS [K+5] =0.

3. Result

The Fig 4, 5 and 6 shows RTL diagrams of SCS

Modified Carry Save Adder based Montgomery modular
multiplication and simulation result respectively. This
system requires less area, critical path delay and number of
clock cycle than SCS Configurable carry save adder based
Montgomery modular multiplication. We can see available
and utilization of flip flops, input LUT’s and slices in area

report. It takes 8.203 ns for completing one modular
multiplication as shown in the timing report.

Fig-4: RTL Diagram of Proposed System

Fig-5: SCS- MCSA- based MMM detailed RTL

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 382

Fig-6: Simulation Report

Area report

Device utilization summary:

 Selected Device: 6s1xtqg144-3
 Slice Logic Utilization:
 Number of Slice Registers: 14 out of 11440
 Number of Slice LUTs: 27 out of 5720
 Number used as Logic: 27 out of 5720

Slice Logic Distribution:

 Number of LUT Flip Flop pairs used: 35
 Number with an unused Flip Flop: 21 out of 35
 Number with an unused LUT: 8 out of 35
 Number of fully used LUT-FF pairs: 6 out of 35
 Number of unique control sets: 3

IO Utilization:

 Number of IOs: 17
 Number of bonded IOBs: 17 out of 102

Specific Feature Utilization:

 Number of BUFG/BUFGCTRLS: 1 out of 16

Timing Report

Timing Report:

 Minimum period: 11.420ns (Max Freq: 87.568MHZ)
 Minimum input arrival time before clock: 3.484ns
 Maximum output required time after clock: 8.203ns
 Maximum combinational path delay: No path found

Timing Details:
 All values displayed in nanoseconds (ns)

4. CONCLUSIONS

By using a Full Carry Save based system, the

necessity to have a format conversion is eliminated. Which
led to a fewer clock cycle operation in operand
precomputation stage. The proposed method modified the
SCS based Montgomery multiplication and enhanced the
computation speed. Thus enhancing the overall Montgomery
multiplication operation and on the other hand reducing the
hardware complexity. This was achieved by modifying the
SCS-based Montgomery multiplication algorithm and
proposed a SCS-MCSA-Based Architecture for Montgomery
Modular Multiplication. The modification was by using one-
level MCSA architecture and skipped the unnecessary carry-
save addition operations to largely reduce the critical path
delay and required clock cycles for completing one
Montgomery Multiplication operation while keeping
hardware complexity to minimum.

REFERENCES

[1]. . R. Kuang, K. Y. Wu and R.Y. Lu, “Low –Cost High

Performance VLSI Architecture for Montgomery
Modular Multiplication”vol.24, no. 2, Feb. 2016.

[2]. C. Mc vor, M. Mc Loone and J. V. Mc Canny, “Modified
montgomery modular multiplication and RSA
exponentiation techniques,” IEEE Proc. Comput. Digit.
Techn. vol. 151, no. 6, pp. 402–408, Nov. 2004.

[3]. Y. . Kim, W. . Kang, and J. R. Choi, “Asynchronous
implementation of 1024-bit modular processor for RSA
cryptosystem,” in Proc. 2nd IEEE Asia-Pacific Conf. ASIC,
pp. 187–190, Aug. 2000.

[4]. Y. Y. Zhang, Z. Li, L. Yang, and . W. Zhang, “An efficient
CSA architecture for Montgomery modular
multiplication,” Microprocessors Microsyst., vol. 31, no.
7, pp. 456–459, Nov. 2007.

[5]. V. . Miller, “Use of elliptic curves in cryptography,” in
Advances in Cryptology. Berlin, Germany: Springer-
Verlag, pp. 417–426, 1986.

[6]. P. L. Montgomery, “Modular multiplication without trial
division,” Math. Compute. vol. 44, no. 170, pp. 519–521,
Apr. 1985.

[7]. H. Zhengbing, R. M. Al hboul, and V. P. hirochin, “An
efficient architecture of 1024-bits crypto processor for
R A cryptosystem based on modified Montgomery’s
algorithm,” in Proc. 4th IEEE Int. Workshop Intel Data
Acquisition Adv. Compute. Syst. pp. 643–646. Sep. 2007.

[8]. S. R. Kuang, J. P. Wang, K. C. Chang, and H. W. Hsu,
“Energy-efficient high-throughput Montgomery modular
multipliers for R A cryptosystems,” IEEE Trans. Very
Large Scale Integer. (VLSI) Syst. vol. 21, no. 11, pp.
1999–2009, Nov. 2013.

