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Abstract - Pulsed metal inert gas welding (P-MIGW) is 
often used to improve weld quality using an advanced spray 
metal transfer with less heat input to the weld. It is a 
nonlinear process with various uncertainties like 
contamination. Thus, the necessity for online welding 
process monitoring has increased in modern manufacturing 
environment. Though, statistical regression methods are 
widely used to develop mathematical models in arc welding, 
it found to be inadequate to predict some specific weld 
quality features like joint strength. So, various intelligent 
tools like soft computing techniques are developed with 
better predictability. Different sensor based features may 
also be useful to improve the process monitoring. This paper 
addresses different statistical features as well as time-
frequency wavelet packet coefficients of sensors’ signals like 
voltage, current for the prediction of weld quality features 
in P-MIGW. The voltage and welding current signals have 
been acquired during welding experiments as per response 
surface design of experiment technique. Initially, a 
comparison has been made between regression models and 
back propagation neural network (BPNN) models for weld 
quality characteristics as a function of process parameters 
like peak voltage, pulse frequency, welding speed, torch 
angle etc. The mathematical regression models were found 
to be inadequate. Therefore, BPNN model has been 
retrained using different sensor based features to improve 
in weld quality prediction capability. Wavelet packets of 
welding current were found to be an important indicator of 
butt joint strength. 

 
Key Words:  Weld Joint strength, hardness variation, Pulse 
parameters, Arc power, Wavelet packet coefficient. 
 

1. INTRODUCTION  
 

Pulsed metal inert gas welding (P-MIGW) is often used in 
today’s manufacturing industries because of uniform 
metal transfer without any spatter at realistic cost than 
constant voltage arc welding processes. It is a superior 
spray metal transfer with reduced heat input to the weld. 
It is a variation of constant voltage arc welding which 
engage cycling of the arc voltage from a peak value to a 
root value at a particular frequency [1]. Current pulsing is 
applied to obtain uniform finer grain in fusion zone (FZ) 
which may produce high joint strength because of uniform 

hardness in FZ and heat affected zone (HAZ) interface. The 
weld quality is the best for one droplet of molten metal 
transfer at the end of wire electrode per one pulse in 
pulsed gas metal arc welding (PGMAW) [2]. The weld 
quality characteristics primarily depend on bead geometry 
[3] and weld microstructure [4], which in turn indicate the 
joint strength and welded plate distortions. These bead 
features are affected by the metal transfer modes and arc 
stability in GMAW. Therefore, it is necessary to establish a 
relation between weld quality features with the process 
parameters. The conventional mathematical regression 
tools like response surface methodology (RSM) focus 
mainly on the mean of the performance characteristic, 
whereas the Taguchi method considers the variance to 
develop the model in arc welding. Various numerical and 
analytical thermal models like finite element method also 
found to be useful to build up the weld distortion model. 
However, arc welding processes, being highly dynamic and 
nonlinear with various types of uncertainties like 
environmental conditions, it is really difficult to design 
reliable welds. This multivariate environment indicates 
the necessity for an intelligent system which can 
characterize and monitor the process in a better way. 
 
The soft computing tools like artificial neural network 
(ANN) provide an alternative approach for predictive 
learning and modelling of weld quality without any 
mathematical model. These evolutionary algorithms 
consider the uncertainty features of the welding 
processes, which may not be expressed by mathematical 
equations. Thus, they are better compared to conventional 
statistical and analytical techniques. These tools can 
handle a large number of data to generate the model and 
optimize it with a short time span. These tools are also 
adaptable for incremental learning, enabling the models to 
be improved incrementally as new data become available. 
In recent years, weld quality can be monitored in real time 
with the application of adaptive sensor integrated control 
systems [5-6]. 
 
In the present work, two major weld quality features 
namely, joint strength (σt) and hardness variation in the 
FZ-HAZ interface (∆Hw-h) have been modelled using ANN 
as well as RSM to improve process monitoring for achieve 
a desired weld bead in P-MIGW. The models are compared 
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and validated by using the data from validation 
experiments. The welding torch angle (αt), welding speed 
(S), and wire feed rate (F) along with three major pulse 
parameters, such as peak voltage (Vp), pulse frequency (fp) 
and pulse on-time (tp) were considered for model 
development. Various time domain statistical features as 
well as time-frequency wavelet features of current and 
voltage signals have also been used in ANN models for 
further improvement of the predictions. 
 
23] investigated the physical laws for the thermo-
piezoelectric materials. Chandrasekharaiah [24] 
generalized Mindlin’s theory of thermo-piezoelectricity to 
account for the finite speed of propagation of thermal 
disturbances on the basis of the first and the second 
thermodynamics laws.  He et al. respectively investigated a 
two-dimensional  generalized  thermo-piezoelectric  
problem  subjected  to  a  thermal  shock  by hybrid  
Laplace  transform-finite  element  method  based  on G-L  
theory  [25]  and  a one-dimensional generalized thermo-
piezoelectric problem subjected to a moving heat source 
by Laplace transform and its numerical inversion in the 
context of L-S theory [26]. So  far,  there  are  few  works  
devoting  to  the  investigation  of  the  dynamic  response  
for piezoelectric-thermo elastic problems in the context of 
fractional order theory of thermoelasticity.  
 
In present work, we focus on investigating the dynamic 
response of a generalized piezoelectric-thermo elastic 
problem subjected to a moving heat source under the 
fractional order theory of thermoelasticity. The problem is 
solved by means of Laplace transform. The variations of 
the considered variables are obtained and illustrated 
graphically. 
 

1.1. Experimental Procedure  
 
 
In this work, a constant voltage P-MIGW machine 
(FRONIOUS make) was used. The experiments were 
carried out on 6 mm mild steel plates using same type 1.2 
mm diameter electrode wire. Pure argon was used as the 
shielding gas. Initially, fifty three butt welding 
experiments have been carried out using half fractional 
central composite response surface methodology. The butt 
weld joints made of one pair of plates were tack welded at 
the two ends before final welding. A Hall-effect current 
sensor (LEM, model LT 500S) and voltage sensor were 
used to acquire the actual process behaviour. The signals 
were acquired using one A/D cards (National Instruments, 
USB-6210) to an Intel Pentium-4 PCs using LabVIEW 7.1 
data acquisition interface at a sampling frequency of 40 
kHz. The schematic representation of the experimental 
set-up is shown in Figure 1. 

 
 

Fig. 1. Schematic diagram of experimental set-up 
 

The butt welded joint specimens have been prepared to 
measure hardness variation and tensile test according to 
ASTM standard. The tensile characteristics have been 
measured by universal tensile testing machine (INSTRON, 
8862) with attached software (Instron Wave Matrix). The 
weld bead was cut crosswise by an abrasive cutter 
(Buehler Delta Abrasimet, 10-2155). The weld fusion zone 
and HAZ have been identified under microscopes after 
cutting, grinding and polishing (using Buehler Ecomet® 
3000), and etching with 2% nital solution. The micro-
hardness was measured with the help of micro-hardness 
tester (UHL VMHT, VMH 001) at 500 gf in various weld 
zones. The butt weld joint samples have been prepared for 
the tensile test according to ASTM (E 8) standard. The 
hardness variation at the FZ-HAW interface was 
considered with the ultimate joint tensile strength as these 
parameters primarily indicate the butt weld joint quality. 
 
The acquired voltage and current signals were post-
processed in the time domain to obtain their root mean 
square (RMS) values Vrms and Irms, respectively. Various 
time domain statistical values like mean, RMS, standard 
deviation and kurtosis of sensors’ signals were found to be 
correlated with different weld quality characteristics in 
butt welding. The RMS value of arc power was found to be 
strongly correlated with joint tensile strength (7-8). So, 
RMS value of current and voltage were further used to 
develop the process modelling. These sensors’ signals have 
also been further analyzed in time-frequency wavelet mode 
to measure the higher level wavelet packet coefficients 
which were further used to improve the prediction 
capability of the models 

 

2. Time-frequency Wavelet Analysis 
 
The wavelet transform is localized in both time and 
frequency instead of only frequency as in case of Fourier 
transform. Wavelet analysis is an efficient windowing 
technique with variable sized windows. It allows the use of 
long time intervals for low frequency information and 
shorter regions for high frequency information. Thus, it 
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can analyze the localized high frequency area of a larger 
signal. 
 
The wavelet is a mathematical function used to divide a 
continuous mode time function (or signal) into different 
scale components. The wavelet transform represents a 
signal by wavelets, which contains translated and scaled 
wave functions of a finite length wave, called as mother 
wavelet. Generally, a wavelet is expressed mathematically 
as: 

 
1

ab

t b
W t W

aa

 
  

 
    

      (1) 
where, b indicates location parameter and a stands for 
scaling parameter [9]. 
 
The wavelet transfer function may be expressed as: 
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     (2) 
For every (a, b) interval, it shows a wavelet transform 
coefficient which represents the degree of similarity of the 
scaled wavelet to the function at the position of t = (b/a). A 
critical sampling indicates the resolution of discrete 
wavelet transform (DWT) in both time and frequency. It 
shows minimum number of wavelet packet coefficients 
sampled from continuous wavelet transform (CWT), 
which ensure about all the information present in the 
original signal. In critical sampling a=2-j and b=k.2-j, where 
integer j and k represent the discrete translation and 
discrete dilations, respectively. Then C (a, b) can be 
expressed as C (j, k). 
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In the wavelet packet analysis, the original signal W (0, 0) 
has been decomposed into two separate frequency band 
part as low frequency and high frequency component by 
passing the signal through a high-pass and low-pass filter, 
respectively in the first level of decomposition. This 
decomposition process will be continued up to the number 
of level of decomposition under consideration. In this 
work, original signal W (0, 0) have been decomposed into 
three levels which is represented by tree structures as 
shown in Fig. 2. 1-D wavelet packet decomposition has 
been carried out using MATLAB 7.8. The signal features 
has found to be insignificant at higher levels beyond this 
third level of decomposition. The RMS values of the third 

level wavelet packet function [0,3]; [0,7]( , ) j kW j k   are 

termed as [0,3]; [0,7]( , ) j kC j k   , which have been processed 

related to the frequency band under consideration. 
 
In this work, these wavelet coefficients corresponding to 
third level of decomposition were assumed as C (3,0)  for 
frequency band of 0Hz to 2500Hz,  C (3,1) for 2500 to 
5000 and so on up to C (3,7) for 17500Hz to 20000Hz, 
where sampling rate was 40 kHz. The Daubechies family of 
wavelets (dbM) has been considered, where M indicates 
the order of mother wavelet function. 
 
Sensitivity analysis has been carried out to identify 
significant wavelet coefficients of voltage and current 
signals. The most significant wavelet packet coefficients 
for voltage [V(3,0), V(3,4), V(3,6)] and current signals 
[(I(3,1), I(3,3), I(3,4)] of the welding experiments (53 
experiments for the model development and 7 more 
experiments for validation of models) along with RMS 
value of voltage and current signals and weld quality 
features are shown in Table 1 

 
Table 1: Process parameters with corresponding sensors’ 

outputs and joint features 
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Fig.2. Wavelet packet tree for third level decomposition of 

acquired sensors’ signals 
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3. Development of RSM and ANN model 
 
Response surface is a functional mapping of multiple 
process parameters to a single output feature. In the 
present research, second order polynomial response 
surface models are developed using first 53 sets of data to 
correlate six input process parameters: S, F, αt, Vp  fp, and tp 
with the each weld quality feature. The MINITAB (release 
13.31, Minitab Inc. 2002) software was used for the model 
development and further statistical analysis to check the 
adequacy of the model. The hardness variation from WZ to 
HAZ (∆Hw-h) and joint ultimate tensile strength (σt) were 
modelled as joint quality features as shown in equation 4 
and 5. The adequacy of the models was tested with 95% 
confidence level using the analysis of variance (ANOVA) 
technique. When the calculated value of ‘t’ corresponding 
to a coefficient exceeds the standard tabulated value, the 
coefficient may be considered as significant. The 
significant regression coefficients were recalculated to 
develop the final model. Finally, the adequacy of the 
models was tested with 95% confidence level using the 
analysis of variance (ANOVA) technique  

 
2 2 2 2101.5 0.3 16.37 113.3 31.9 215 1.5 3.3 0.9 7

0.2 0.7 2.2 0.2 0.1 1.8 0.3 12.1 3.8 0.4

w h t p p p p

t t p p p p p p p p p p p

H S F V t s F V t

F t SF SV Sf St FV Ff Ft V t f t



 

           

          

  (4) 
 

2 2

2697.2 0.4 135.2 595 177.1 2.8 545.9 5 17.9 3.9 0.7 0.7 0.2 2.7

15.3 19. 0.2 10 8.4 2.1 56.8 0.1 8.1 1.6

t t p p p p t t t p t p

p p p p p p p p p p p p

S F V f t S F V S F V t

SF SV Sf St FV Ff Ft V f V t f t

                  

         

 (5) 
 
The multi-layered feed-forward network with back 
propagation gradient descent learning algorithm is widely 
used in welding process modelling. The feed forward 
network constitutes an input layer, an output layer and 
any number of hidden layers. Each layer is comprised of a 
variable number of nodes as neurons. In the present work, 
a code for multi-neuron, multi-layered back-propagation 
(BPNN) model is used for mapping the P-MIGW process 
parameters to weld quality characteristics. 
 
In this work single hidden layer with log-sigmoidal 
transfer function (f) has been used in all the layers 
considering the non-linearity of the process behaviour. 
The nodes of each layer are interconnected to the 
preceding and subsequent layer nodes with synaptic 
weights. In the forward pass, the weighted inputs (I) are 
summed up to determine the output (O) of the neuron as 
per equation 6. The weight of each preceding nodes (wji) 
multiplied by corresponding inputs (yi) whose summed up 
value indicate the weighted input of jth neuron. 

 

 ( ) ji iO f I f w y     

      (6) 

Training algorithms change the inter-neuron weights in 
such a way as to reduce a desired error function (E) 
relating the target values (Ti) to the actual output (Oi) 
values (equation 7). 
  

 
2

1

1 N

i iE T O
N

      

     (7) 
 
Each synaptic weight is modified from Wold to Wnew 
according to an error correction rule (equation 3) based 
on the gradient descent technique to minimize the mean 
square error (MSE) between actual pth output (Opk) and 
desired pth output (Tpk) to the total number of training 
pattern (N) during the backward pass as per equation 8. 
The learning rate (η) is to be adjusted to reduce MSE. The 
momentum coefficient (α) has also been used to maintain 
the stability of η with adequate learning according to delta 
rule. 

new old

i

E
W W

W



 


   

      (8) 

 
2

1 1

1

2

N P
k k

p p

k p

MSE T O
N  

    

      (9) 
 
The performance of the model depends on the network 
parameters like number of neurons in hidden layer (j), no 
of hidden layer (h), learning rate of the synaptic weights 
(η) and momentum coefficient (α). There is no significant 
improvement of MSE in testing with the consideration of 
more number of hidden layers in the present case. Thus, 
single hidden layer is considered, whereas j, η and α were 
varied from 1 to 30, 0.1 to 0.9 and 0.1 to 0.9, respectively. 
Single hidden layer was found to be sufficient to reduce 
MSE in training as well as testing with less number of 
iterations (i.e. less computational time). Several trials 
were made to finally obtain the optimal architecture, 
which can provide the minimum MSE in testing. The 
optimum architecture was found by varying the number of 
neurons in the hidden layer along with the variation of η 
and α. This evaluation was carried out by the 
determination of MSE in testing (MSE_TEST) based on the 
absolute prediction error value of the weld quality 
characteristics. 
 
The RMS value of arc current and voltage were used with 
process parameters in BPNN models to improve the 
prediction capability as RMS arc power was found to be 
correlated with joint mechanical properties. Various 
combinations of sensors’ signal features were used along 
with six process parameters to investigate the weld 
quality prediction as shown in Table 2. The process 
parameters were only been considered in Strategy #1. The 
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RMS value of welding signals (current and voltage) was 
used in Strategy #2. Wavelet packet coefficients of current 
and voltage signal with process parameters were used in 
Strategy #3 and #4, respectively. Finally, the best wavelet 
packet coefficients of the voltage and current signals were 
considered in Strategy #5.The number of neurons in the 
input layer of the developed BPNN models depends on the 
strategy under consideration. 
 

Table 2. Weld quality prediction strategies 
 

Sl 
no 

Features used in the BPNN 
model 

Number of input 
nodes 

1 Six process parameters 6 

2 
Six process parameters with 

RMS welding 
8 

3 

Six parameters with RMS 
values of wavelet 

packet coefficients of current 
signa 

14 

4 

Six parameters with RMS 
values of wavelet 

packet coefficients of voltage 
signal 

14 

5 

Six parameters with RMS 
values of 

significant wavelet packet 
coefficients of 

current and voltage signals 

16 

 

4.  Result and Discussions 
 
The ANOVA results are shown in Table 3 and Table 4 for 
two weld quality feature models. The acceptance of these 
models mainly depends on P-value, F-value and R2 value. P-
value indicates the probability of significance. It is 
calculated based on the F-ratio. The P-value is then 
compared with the assumed confidence level (in this case 
95 %). If the P-value is less than 0.05, then the model may 
be accepted. The F-value of the model has to be higher than 
the tabulated F- value at 95 % confidence level at 
respective DOF of both the regression model and residual 
error. Thus, these criteria were found to be fulfilled, i.e. the 
regression models were acceptable. However, the R2 value 
i.e. the coefficient of correlation indicates the closeness of 
the predicted output values with the actual experimental 
responses. Its’ value lies in between 0 to 1. Higher R2 value 
indicates better model. The R2 values for hardness 
variation (∆Hw-h ) and tensile strength (σt) were found to be 
less than 0.85. Thus, the mean absolute prediction errors 
for seven validation experiments were found to be more 
than 35% (Table 6). Therefore, it may be concluded that 
the second order regression equations are not so adequate 
to represent the relationship between process parameters 
with respect to these two weld quality characteristics. 
 
 

Table 3. ANOVA table for hardness variation (∆Hw-h) model 
 
Source DOF SS MS F-

value 
P-
value 

Equation 
4 

26 24465.8 940.99 5.89 0.000 

Residual 
error 

26 4153.5 159.75   

Total 52     
F0.05, 26, 26 = 1.94 
 

Table 4. ANOVA table for joint tensile strength (σt) model 
 
Source DOF SS MS F-

value 
P-
value 

Equation 
5 

26 450447 17324.9 4.10 0.000 

Residual 
error 

26 109801 4223.1   

Total 52 560248    
F0.05,26,26 = 1.94 
 
The simulation result of various strategies using BPNN 
code was compared according to prediction error (Table 
5). The prediction capability of the various neural network 
structures were compared with mean square error in 
testing (MSE_TEST). The 6-30-2 architecture with η and α 
as 0.4, and 0.4, respectively proved the best data fitting for 
the prediction of joint tensile strength and hardness 
variation without considering sensor features. This 
optimum architecture provided the minimum MSE in 
training (MSE_TRAIN) and testing (MSE_TEST) as 
0.007358 and 0.009317, respectively. 
 
Table 5. Prediction performance of BPNN models for weld 

quality features using various strategies 
 

Proc
ess 
outp
uts 

Strat
egy 
No 

Best 
Netw
ork 

Optim
um 
η 

Optim
um 
α 

MSE_T
RAIN 

MSE_T
EST 

Σt, 
∆Hw-

h 

1 6-30-
2 

0.4 0.4 0.0073
58 

0.0093
17 

 2 8-29-
2 

0.5 0.4 0.0097
33 

0.0077
42 

 3 14-4-
2 

0.5 0.1 0.0028
64 

0.0057
81 

 4 14-4-
2 

0.6 0.5 0.0038
61 

0.0073
41 

 5 16-
12-2 

0.5 0.5 0.0049
17 

0.0063
55 

 
The absolute prediction error was found to be 14.69% and 
27.18% for joint tensile strength and hardness variation, 
respectively. However, joint strength prediction error was 
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considerably reduced to 7.44% considering best sensor 
based strategy (strategy #3) as shown in Table 6. The 14-4-
2 network structure with learning rate and momentum 
coefficient of 0.5 and 0.1, respectively, was found as the 
best network parameters for the prediction of joint 
strength and hardness variation at the interface of weld 
fusion zone to unaffected base plate. The minimum MSE in 
training (MSE_TRAIN) and testing (MSE_TEST) using this 
best network were 0.002864 and 0.005781, respectively. 
Therefore, it may be concluded that wavelet feature of 
current signal is an important indicator to monitor joint 
strength. 
 
Table 6. Comparison of prediction performance of various 
modelling techniques 
 
Weld quality 
Features 

Mean absolute prediction 
error (%) using 

 

 RSM BPNN Sensor based 
BPNN 
(Strategy #3) 

∆Hw-h 36.90 14.69 14.86 
37.45 27.18 7.44 

 
The actual joint tensile strength of the seven validation 
experiments with predicted values using RSM, BPNN and 
best sensor based BPNN (Strategy #3) are shown in Fig 3. 
The predicted value of individual tests using sensor based 
BPNN technique were almost close to experimental values. 
Therefore, sensor based features are highly useful to 
predict weld quality features in a better way. 

Fig. 3. Prediction of joint tensile strength using various 
modelling techniques 

 
 
 
 

5. Conclusion  
 
The arc sensors’ signals are strongly correlated with joint 
mechanical properties in P-MIGW process. The 
mathematical regression model is inadequate to predict 
weld joint strength. However, it is significantly improved 
using wavelet packet coefficients of current signal in back-
propagation ANN technique. The average prediction error 
was reduced from 37% using RSM model to 21% using 
BPNN models which again further improved to 11% using 
wavelet features of current signal with six process 
parameters which is highly competitive with earlier works. 
Thus, BPNN models are better than response surface 
regression models in terms of prediction capability. The 
current signal wavelet values are highly useful to improve 
joint strength monitoring capability. 
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