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Abstract - In this paper, we propose a new Human Action 
Recognition algorithm depending on hybrid features 
extraction from silhouettes and Neural Networks for 
classification. The hybrid features include contour history 
images which is a new method, movement tracking of the 
body's center and the relative of dimensions of the bounding 
box. For features reduction, three methods are compared, 
dividing the contour history images to rectangles, a shallow 
autoencoder and a deep autoencoder. Each of these 
autoencoders depends basically on Neural Networks. We 
tested this algorithm using a global human action dataset and 
the recognition rate was 98.9%, which is the only criterion for 
system evaluation used till now. That is why we defined a new 
criterion related to the Time needed to Test a video with a 
duration of one Second, and we called it TT1S. This criterion is 
helpful to compare the performances of different systems, and 
to evaluate the capability of the system in real-time 
applications. 
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1. INTRODUCTION 
 
 Human action recognition means the recognizing of 

human behavior such as walking, jumping, running..etc. It 
has been an active research topic in the last years due to its 
many applications [1], including security and surveillance, 
content based video analysis, interactive applications, 
animation, and behavioral biometrics. 

 

Human action recognition systems can be classified in two 
branches: the first one is based on wearable sensors and the 
second depends on one camera or more which is the most 
important one because it has more applications. The use of 
multiple cameras is helpful especially for occlusions or 3D 
modeling, but they need to be synchronized which is not an 
easy process. Multiple cameras-systems have big amount of 
data which means that they need more processing time than 
one camera-systems. Moreover, multiple cameras are useful 
for short distances only. 

 
With the use of one camera, silhouettes are widely 

exploited because they contains the amount of information 
needed to recognize the human posture; besides they are 
binary images and that reduces both of the size of data 
needed to be processed and the process time as well. 

 
Many datasets that contain videos for people doing 

different actions have been proposed. One of the most 
famous human action datasets is Weizmann dataset, which 
we have used for the evaluation of our proposed methods. 

 

2. PREVIOUS WORKS 
 
Many works have been carried out to recognize human 
actions from video sequences. All of them can be located in 
Pattern Recognition field. Different features and different 
classification methods have been explored.  

 
A human action recognition system that uses contours of 

silhouettes was suggested in [2] where the authors divided 
the images into small rectangles and counted the contour 
points in each one, and HMM was used for classification. 
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A new method that uses Motion History Images was 
suggested in [3], and Silhouette History Images were used 
later in [4] with SVM classifier. Each of MHI and SHI 
depended on gathering sequential silhouettes in one gray 
image, where every silhouette has different grayscale 
according to its novelty. In [5], Hybrid features from 
silhouettes and joints information’s were used with 
embedded Hidden Markov Models. A fast and an easy 
implementation system was proposed in [6] in which 
Feature Covariance Matrices were used with nearest 
neighbor classifier. In [7], a real-time system was proposed 
using Affine Invariant Fourier Descriptors which are useful 
when the view direction of the camera changes, or when its 
distance from the object also changes. 

 
Deep learning refers to a branch of machine learning 

methodologies in which many layers are used for pattern 
recognition and features learning. A human action 
recognition system using a Deep Believe Network was 
proposed in [8]. A full automated system was designed in [9] 
using a Convolutional Neural Networks and a Recurrent 
Neural Network. The results were good, and an Online Deep 
Learning Algorithm is proposed in [10]. 

 
In this paper, a new Algorithm is proposed using a hybrid 

features depending on Contour History Images (CHIs) and 
body center movement. CHIs are different from Motion 
History Images and Silhouette History Images because they 
are binary images. For features reduction, three methods 
were compared: rectangles, shallow autoencoder and a deep 
autoencoder. The algorithm uses Neural Networks for 
classification; one layer and two layer Neural Networks 
classifiers were compared. All comparisons include 
recognition rate and time proving that our algorithm may be 
used for real-time applications. 

 

3. PROPOSED ALGORITHM 
 
The flowchart of the algorithm is shown in Fig -1. At first, a 
window of sequenced frames is observed and silhouette 
images are extracted using background subtraction. 
Secondly, features are extracted and they depend on CHIs, 
vector of the center's movement and the relative of the 
bounding box's dimensions that contains each CHI. For the 
classification stage, we use a neural network. 
 
The output of the neural network represents the result of the 
classification for one window which is taken from a video 
sequence. This output vector will be stored and another 
window will be processed, after classification, we will have 
another output vector which is added to the first one. At the 
end of the video, we have a total output vector and its 
maximum value decide the result of the classification stage. 

 
3.1 Features Extraction 

 
In order to extract the hybrid features, a new methodology 

is proposed, shown in Fig -2. It starts with a window of 
silhouettes, and then contours are extracted. The images that 
contain contours are added together to get a single binary 
image which contains CHI, as in Fig -3. The bounding box  
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Fig -1: The flowchart of the proposed algorithm 
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Fig -2: Features Extraction Diagram 
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Which contains the CHI is taken, and resized into fixed 
dimensions. This resizing is important to overcome the  
 

 
anthropometric variations. The scaled CHI needs a feature 
reduction procedure and three methods for features 
reduction will be discussed in next paragraph. Besides, 
another features were added which is related to the 
movement of the center of the contour images during the 
M_frame window. We also took the relative of the bounding 
box's dimensions of the CHI before scaling. Using hybrid 
features as in our algorithm raises a problem with the 
variation of the values. To solve this problem, we Apply 
Z_score transformation to scale the values. During the 
training, the mean values' vector and standard deviation's 
vector are calculated and stored to be used later while 
applying Z_score transformation in testing. 

 
3.2 Features Reduction 

 
For features reduction or features encoding, three 

methods have been tested and compared: rectangles 
method, shallow autoencoder method and deep autoencoder 
method. Fig -4 clarifies these three methods. 

 
The rectangles method depends on dividing the scaled 

CHI into small rectangles and counting the number of points 
in each rectangle. Autoencoder is an automatic procedure to 
encode a vector of data that is used in many applications. 
The second method depends on a shallow autoencoder 

which is based on a neural network with one hidden layer. 
Its output layer is a copy from the input layer: same number 
of units and same values. The use of CHIs is helpful because 
they are binary images, which means that all input values to 
the autoencoder are binary. 

 
Training the shallow autoencoder means that the first 

layer of weights will be trained to encode the input vector 
into a vector of a smaller length which is equal to the hidden 
units' number. At the end of the training, only the first layer 
of weights is considered as the second layer of weights and 
output layer are only used during the training to make sure 
that the encoding was good enough to return the input 
vector from the hidden units' layer. These units represent 
the code or the auto_encoded features. 

 
The third method is based on a deep autoencoder. Deep 

autoencoder is a general term used to express any deep 
architecture that is based on autoencoders. In our case, we 
have used a stack of shallow autoencoders to form a deep 
autoencoder which is shown in Fig -5. More explanation 
about this deep autoencoder and training procedures can be 
found in the experimentation part. 

3.3 Classification With Neural Networks 
 
In classification, a feed forward neural network is used. We 
have used Error Back Propagation algorithm to train the 
network and The Gradient Descent algorithm to update the 
weights during the training. We have also used The Sigmoid 
function to scale output values in the domain [0,1] and Sum 
of Squares as an error function. 
 
Every window contains M frames. By applying its 
corresponding features' vector to the trained neural 
network, we obtain one output vector. The total result of 
classification is calculated by adding these partial output 
vectors together as we have explained before. 
 

4. EXPERIMENTATION AND RESUlTS 
 
One of the most famous human action datasets used in 
algorithm’s evaluation is Weizmann dataset. This dataset 
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Fig -4: Comparing three methods for features reduction 
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Fig -5: The structure of the used deep autoencoder 
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contains 93 videos; each one has a frame rate of 25fps with a 
frame size of 180*144 pixels. There are 9 actors; each of 
them are performing 10 different activities which are: 
walking, running, side_moving, skipping, jumping forward, 
jumping in place, jumping-jack, bending, waving one hand 
and waving two hands. Examples of these activities are 
shown in Fig -6. One of the actors is performing each of 
running, walking and skipping in both sides; from left to 
right and from right to left, so this actor has 13 videos 
whereas each of the other 8 actors is performing 10 videos, 
which makes 93 videos in total. 
 

 
 

Fig -6: Some actions from Weizmann dataset. The Figure is 
taken from the website 

 
To evaluate the performance of our algorithm, we have made 
Leave-one-out test for the 93 video scripts in Weizmann 
dataset.  

 
Besides the recognition rate criterion adopted by the 

previous works, we think that it is important to determine 
the time needed to obtain the classification result. That is 
why we defined TT1S criterion related to the Time needed to 
Test 1 Second from video data. This criterion helps 
comparing the performances of different systems vs. time. 
Moreover, TT1S will tell whether a system can be used in 
real time or not. 

 
If TT1S is less than 1 second, the system will be able to 

process the current window before the availability of the 
next window, and we can say that the system can be used in 
real time. Otherwise, the system cannot be used in real time. 

  
The problem with comparing using TT1S is the 

differentiation between computers' specifications, but it is 
still a useful indicator if we knew the computer's 
specifications. Anyway TT1S results are completely useful 
when comparison is done using the same computer and it 
can tell if a system can be used in real time applications 
using a certain computer specifications as minimum 
specifications. To calculate TT1S, we have chosen a certain 
video from the used dataset, and we have measured the time 
needed to get the classification result, then it was easy to 
calculate TT1S using the video's frame rate.  

4.1 Comparing Rectangles, shallow autoencoder, 
and deep autoencoder methodologies 

 
In this comparison, only the vector of features taken from 

the scaled CHI is considered, without the movement of 
center. To test the Rectangles method, we divided the CHI 
into a 100 small rectangles, so we got a 100 values by 
counting the contours points in every small rectangle. 

 
We used a shallow autoencoder with one hidden layer 

which had 100 hidden units, so the shallow autoencoder is 
used to encode 50*25 CHI,or 1250 values into 100 values at 
first, then it is used to encode 5000 values (100*50  CHI) into 
100 values. 

 
The deep autoencoder is based on three shallow 

autoencoders. To make the things clear, let us start with a 
50*25 CHI, or an Input vector whose length is 1250. The first 
shallow autoencoder has 600 hidden units, it is used to 
encode the 1250 values into a 600 values. At the end of 
training with the training vectors, the first hidden weights' 
layer of this shallow autoencoder will be stored as the first 
weights' layer in the deep autoencoder, or the first matrix 
M1. The second shallow autoencoder is used to encode 600 
values into a 300 values, so it has 300 hidden units. To train 
this shallow autoencoder, the same training vectors for the 
first autoencoder were used, but they were multiplied by the 
Matrix M1. After the training, the first hidden weights' layer 
of the second shallow autoencoder will be stored as the 
second matrix in the deep autoencoder, M2. The third 
shallow autoencoder is the last one which will encode the 
300 values into a 100 values. This one gives us the last 
matrix M3 in the deep autoencoder. 

We have used the same general deep architecture with 
100*50-CHI, so 5000 values were encoded into 1000, 300, 
and 100 gradually. 

 
We considered the Leave_one_actor_out test in the three 

methods, using Weizmann dataset. A normal PC was used 
(core i3 CPU 2.27GHz, 4GB RAM).  The comparison ran in 
MATLAB environment, and it included both recognition rate 
and TT1S for CHIs with two different sizes: 50*25 and 
100*50 pixels. The results are shown in both of Table 1 and 
Table 2. 

 
Table -1 :Comparing the results for the three features 

reduction methods. The vector length is 1250 
 

Method TT1S Recognition rate 
(Leave_one_actor_out) 

Rectangles 2.3s 96.8% 

Shallow Autoencoder 2.0s 95.7% 

Deep Autoencoder 2.2s 95.7% 
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Table -2: Comparing the results for the three features 
reduction methods. The vector length is 5000 

 
Method TT1S Recognition rate 

(Leave_one_actor_out) 

Rectangles 2.3s 95.7% 

Shallow Autoencoder 2.3s 89.25% 

Deep Autoencoder 2.6s 90.32% 

 

4.2 Discussion About The Comparing Results 
 
For a vector length equals to 1250, the results are close 

and they are all good. First of all, we can say that using CHIs 
as a start was a good idea. 

 
It was expected that the shallow autoencoder needs less 

time than the deep autoencoder to encode data, but they 
gave the same recognition rate. This gives us a motivation to 
make another test with features' vector length of 5000. 

 
Table 2 shows that the deep autoencoder gives a 

recognition rate that is little bit better than shallow encoder 
when the vector's length increased, but it is not a big 
difference. Both autoencoders' recognition rate decreased 
remarkably when the vector's length increased, while we did 
not notice a big difference for the rectangles method. So 
autoencoders might be used for limited steps in feature 
encoding. 

 
It is also important to point out that training the shallow 

autoencoder takes some time, training the deep autoencoder 
takes too much time because of three shallow autoencoders 
needed to be trained, the deep autoencoder takes 270 
minutes to be well trained for one actor test with vector's 
length equal to 5000, but the training time for the shallow 
autoencoder takes 44 minutes for similar test, while in the 
rectangle method takes only 5 minutes. But training time is 
less important than recognition rate or TT1S. The time 
needed to train the deep autoencoder made us use 
Leave_one_actor_test in this comparison instead of 
Leave_one_out test. 

 
However, the most important thing about autoencoders is 

that they can be widely used for features' reduction. 
Therefore, we do not have to think about the appropriate 
method for features' reduction. The half-automated system 
composed of CHI+ shallow-autoencoder +NN classifier, gives 
a good recognition rate, and it can also be used in real time if 
we increase the window-step. 

 
For the proposed algorithm, we have chosen the 

rectangles method as a feature reduction method as it gives 
the best recognition rate. 

 
 
 

4.3 Algorithm Testing 
 
To evaluate the performance of our algorithm, we have 

made Leave-one-out test for the 93 video scripts in 
Weizmann dataset. 

 
Practically we took a window length M=14, so we get a 

total vector of features whose length is 127, distributed as 
follows: 100 values from the CHI-features, 26 values from 
tracking the movement of the center, and a value represents 
the relative of dimensions of the bounding box which 
contains the CHI before resizing.  

 
The step between two windows is 5 frames. Window_step 

can be modified easily. It should be set according to the 
frame rate of the video or according to the needed TT1S as 
we will see later. 

 
First, we have used one layer Neural Network (1LNN) as a 

classifier that contains only an input layer and an output 
layer with no hidden layers. The confusion matrix is shown 
in Table -3 and the recognition rate was 96.77%. Then we 
have used a Neural Network with one hidden layer (2LNN) 
which has 60 hidden units. The recognition rate has 
increased to 98.9% and the confusion matrix is shown in 
Table -4. 

 
The comparison between the results of the 2LNN 

classifier and the 1LNN classifier can be found in Table -5 
where we have added TT1S to the results.  

 
In  order to calculate TT1S we have chosen "lina_jack.avi" 

from Weizmann dataset because it is a long-term video 
(relatively) which contains 146 frame, we measured the time 
needed to calculate the total result, then we calculated TT1S 
because we know that in Weizmann dataset we have 25 
frames in one second. 

 
2LNN classifier gives a better recognition rate than 1LNN  
 

Table -3: scaled convolution matrix for 1LNN classifier 
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Table -4: Scaled Convolution matrix for 2LNN classifier 
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Table -5: Comparing 1LNN classifier with 2LNN 

classifier 
 

NN Layers number TT1S Recognition rate 
(Leave_one_out) 

1 2.5s 96.77% 

2 2.8s 98.9% 

 
Table -6: 2LNN classifier with different window-step 

 
Window step TT1S Recognition rate 

(Leave_one_out) 

5 2.8s 98.9% 

13 0.96s 97.8% 

 
Classifier, but it needs a little more time to calculate the 

classification result. In both results, TT1S is still more than 1 
second. If we change the window-step from 5 to 13 during 
the testing and keep it 5 during the training, we will get a 
TT1S of less than 1 second as in Table -6, but recognition 
rate will decrease a little bit as the overlapping between the 
windows will be only one frame. 

 
Most of the previous works focused only on the 

recognition rate, and it is hard to compare the time needed 
for classification in the previous works. Table -7 shows a 
comparison of our method with the previous works that had 
Weizmann dataset for testing and Leave_one_out as a test 
method. 

 
Table -7: Comparison with previous works 

 
Method Year Recognition rate 

Wu and Shaw [11] 2013 97.78% 

Touati & Mignotte [12] 2014 92.3% 

Cai and Feng [13] 2015 93.55% 

Cheng et al. [14] 2015 94.44% 

Tang et al. [15] 2016 97.85% 

Our method  98.9% 

 
 
 

5. CONCLUSION 
 
In this paper we have presented a new algorithm for 

Human Action Recognition from video data. We have tested 
our algorithm using Weizmann as dataset and Leave_one_out 
as test method, the recognition rate was 98.9%. We have 
defined TT1S to evaluate the performance vs. time. The 
Proposed method can be applied in real time systems 
because we could get TT1S<1s with a recognition rate of 
97.8%. We have tested both of shallow autoencoder and 
deep autoencoder as features reduction methods, important 
comparison and results was presented. The autoencoders 
gives a good recognition rate and they can be used widely for 
features reduction. A half-automated system with a good 
recognition rate can be done using an autoencoder. 
Moreover, this paper shows the important results we could 
get using NN classifier. 
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