
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1766

Human Action Recognition using Contour History Images and Neural
Networks Classifier

1Bashar Wannous, 2Assef Jaafar, 3Chadi Albitar

1,2,3 Higher Institute for Applied Sciences and Technology
---***---

Abstract - In this paper, we propose a new Human Action
Recognition algorithm depending on hybrid features
extraction from silhouettes and Neural Networks for
classification. The hybrid features include contour history
images which is a new method, movement tracking of the
body's center and the relative of dimensions of the bounding
box. For features reduction, three methods are compared,
dividing the contour history images to rectangles, a shallow
autoencoder and a deep autoencoder. Each of these
autoencoders depends basically on Neural Networks. We
tested this algorithm using a global human action dataset and
the recognition rate was 98.9%, which is the only criterion for
system evaluation used till now. That is why we defined a new
criterion related to the Time needed to Test a video with a
duration of one Second, and we called it TT1S. This criterion is
helpful to compare the performances of different systems, and
to evaluate the capability of the system in real-time
applications.

Key Words: Human Action Recognition, Contour History
Images, Silhouettes, Neural Networks, Autoencoder, Deep
Autoencoder, real time

1. INTRODUCTION

 Human action recognition means the recognizing of

human behavior such as walking, jumping, running..etc. It
has been an active research topic in the last years due to its
many applications [1], including security and surveillance,
content based video analysis, interactive applications,
animation, and behavioral biometrics.

Human action recognition systems can be classified in two
branches: the first one is based on wearable sensors and the
second depends on one camera or more which is the most
important one because it has more applications. The use of
multiple cameras is helpful especially for occlusions or 3D
modeling, but they need to be synchronized which is not an
easy process. Multiple cameras-systems have big amount of
data which means that they need more processing time than
one camera-systems. Moreover, multiple cameras are useful
for short distances only.

With the use of one camera, silhouettes are widely

exploited because they contains the amount of information
needed to recognize the human posture; besides they are
binary images and that reduces both of the size of data
needed to be processed and the process time as well.

Many datasets that contain videos for people doing

different actions have been proposed. One of the most
famous human action datasets is Weizmann dataset, which
we have used for the evaluation of our proposed methods.

2. PREVIOUS WORKS

Many works have been carried out to recognize human
actions from video sequences. All of them can be located in
Pattern Recognition field. Different features and different
classification methods have been explored.

A human action recognition system that uses contours of

silhouettes was suggested in [2] where the authors divided
the images into small rectangles and counted the contour
points in each one, and HMM was used for classification.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1767

A new method that uses Motion History Images was
suggested in [3], and Silhouette History Images were used
later in [4] with SVM classifier. Each of MHI and SHI
depended on gathering sequential silhouettes in one gray
image, where every silhouette has different grayscale
according to its novelty. In [5], Hybrid features from
silhouettes and joints information’s were used with
embedded Hidden Markov Models. A fast and an easy
implementation system was proposed in [6] in which
Feature Covariance Matrices were used with nearest
neighbor classifier. In [7], a real-time system was proposed
using Affine Invariant Fourier Descriptors which are useful
when the view direction of the camera changes, or when its
distance from the object also changes.

Deep learning refers to a branch of machine learning

methodologies in which many layers are used for pattern
recognition and features learning. A human action
recognition system using a Deep Believe Network was
proposed in [8]. A full automated system was designed in [9]
using a Convolutional Neural Networks and a Recurrent
Neural Network. The results were good, and an Online Deep
Learning Algorithm is proposed in [10].

In this paper, a new Algorithm is proposed using a hybrid

features depending on Contour History Images (CHIs) and
body center movement. CHIs are different from Motion
History Images and Silhouette History Images because they
are binary images. For features reduction, three methods
were compared: rectangles, shallow autoencoder and a deep
autoencoder. The algorithm uses Neural Networks for
classification; one layer and two layer Neural Networks
classifiers were compared. All comparisons include
recognition rate and time proving that our algorithm may be
used for real-time applications.

3. PROPOSED ALGORITHM

The flowchart of the algorithm is shown in Fig -1. At first, a
window of sequenced frames is observed and silhouette
images are extracted using background subtraction.
Secondly, features are extracted and they depend on CHIs,
vector of the center's movement and the relative of the
bounding box's dimensions that contains each CHI. For the
classification stage, we use a neural network.

The output of the neural network represents the result of the
classification for one window which is taken from a video
sequence. This output vector will be stored and another
window will be processed, after classification, we will have
another output vector which is added to the first one. At the
end of the video, we have a total output vector and its
maximum value decide the result of the classification stage.

3.1 Features Extraction

In order to extract the hybrid features, a new methodology

is proposed, shown in Fig -2. It starts with a window of
silhouettes, and then contours are extracted. The images that
contain contours are added together to get a single binary
image which contains CHI, as in Fig -3. The bounding box

Input video

Feature extraction

Classification with neural network

Storing output

values

Sum of stored values, find max

bendwalkwave2

End of video?

yes

No

Observe
window

Fig -1: The flowchart of the proposed algorithm

Extract Silhouette Image

Extract Contour

Centered
Contour

Add latest M
 Centered
Contour

Image

Video Input

Determining and
storing contour

image center

Calculating and
storing center

movement

Relative
Bounding Box

Dimensions

Z_scored Input Vector

Features reduction

Bounding
Box&Resize

To the Neural Network

Fig -2: Features Extraction Diagram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1768

Which contains the CHI is taken, and resized into fixed
dimensions. This resizing is important to overcome the

anthropometric variations. The scaled CHI needs a feature
reduction procedure and three methods for features
reduction will be discussed in next paragraph. Besides,
another features were added which is related to the
movement of the center of the contour images during the
M_frame window. We also took the relative of the bounding
box's dimensions of the CHI before scaling. Using hybrid
features as in our algorithm raises a problem with the
variation of the values. To solve this problem, we Apply
Z_score transformation to scale the values. During the
training, the mean values' vector and standard deviation's
vector are calculated and stored to be used later while
applying Z_score transformation in testing.

3.2 Features Reduction

For features reduction or features encoding, three

methods have been tested and compared: rectangles
method, shallow autoencoder method and deep autoencoder
method. Fig -4 clarifies these three methods.

The rectangles method depends on dividing the scaled

CHI into small rectangles and counting the number of points
in each rectangle. Autoencoder is an automatic procedure to
encode a vector of data that is used in many applications.
The second method depends on a shallow autoencoder

which is based on a neural network with one hidden layer.
Its output layer is a copy from the input layer: same number
of units and same values. The use of CHIs is helpful because
they are binary images, which means that all input values to
the autoencoder are binary.

Training the shallow autoencoder means that the first

layer of weights will be trained to encode the input vector
into a vector of a smaller length which is equal to the hidden
units' number. At the end of the training, only the first layer
of weights is considered as the second layer of weights and
output layer are only used during the training to make sure
that the encoding was good enough to return the input
vector from the hidden units' layer. These units represent
the code or the auto_encoded features.

The third method is based on a deep autoencoder. Deep

autoencoder is a general term used to express any deep
architecture that is based on autoencoders. In our case, we
have used a stack of shallow autoencoders to form a deep
autoencoder which is shown in Fig -5. More explanation
about this deep autoencoder and training procedures can be
found in the experimentation part.

3.3 Classification With Neural Networks

In classification, a feed forward neural network is used. We
have used Error Back Propagation algorithm to train the
network and The Gradient Descent algorithm to update the
weights during the training. We have also used The Sigmoid
function to scale output values in the domain [0,1] and Sum
of Squares as an error function.

Every window contains M frames. By applying its
corresponding features' vector to the trained neural
network, we obtain one output vector. The total result of
classification is calculated by adding these partial output
vectors together as we have explained before.

4. EXPERIMENTATION AND RESUlTS

One of the most famous human action datasets used in
algorithm’s evaluation is Weizmann dataset. This dataset

Shallow Autoencoder

100 values

Rectangles method

CHI Image

Deep Autoencoder

Fig -4: Comparing three methods for features reduction

Fig -3: Contour History Images (CHIs) for walking
and running

Autoencoder1

1

2

N

1

2

N

1

2

HU1

M1

bias

bias

Autoencoder2

1

2

HU1

1

2

HU1

1

2

HU2

M2

bias

bias

Autoencoder3

1

2

HU2

1

2

HU2

1

2

HU3

M3

bias

bias

M1 M2 M3

Deep Autoencoder

N

bias

Input

HU3

Output

W1 W2 W3

Fig -5: The structure of the used deep autoencoder

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1769

contains 93 videos; each one has a frame rate of 25fps with a
frame size of 180*144 pixels. There are 9 actors; each of
them are performing 10 different activities which are:
walking, running, side_moving, skipping, jumping forward,
jumping in place, jumping-jack, bending, waving one hand
and waving two hands. Examples of these activities are
shown in Fig -6. One of the actors is performing each of
running, walking and skipping in both sides; from left to
right and from right to left, so this actor has 13 videos
whereas each of the other 8 actors is performing 10 videos,
which makes 93 videos in total.

Fig -6: Some actions from Weizmann dataset. The Figure is
taken from the website

To evaluate the performance of our algorithm, we have made
Leave-one-out test for the 93 video scripts in Weizmann
dataset.

Besides the recognition rate criterion adopted by the

previous works, we think that it is important to determine
the time needed to obtain the classification result. That is
why we defined TT1S criterion related to the Time needed to
Test 1 Second from video data. This criterion helps
comparing the performances of different systems vs. time.
Moreover, TT1S will tell whether a system can be used in
real time or not.

If TT1S is less than 1 second, the system will be able to

process the current window before the availability of the
next window, and we can say that the system can be used in
real time. Otherwise, the system cannot be used in real time.

The problem with comparing using TT1S is the

differentiation between computers' specifications, but it is
still a useful indicator if we knew the computer's
specifications. Anyway TT1S results are completely useful
when comparison is done using the same computer and it
can tell if a system can be used in real time applications
using a certain computer specifications as minimum
specifications. To calculate TT1S, we have chosen a certain
video from the used dataset, and we have measured the time
needed to get the classification result, then it was easy to
calculate TT1S using the video's frame rate.

4.1 Comparing Rectangles, shallow autoencoder,
and deep autoencoder methodologies

In this comparison, only the vector of features taken from

the scaled CHI is considered, without the movement of
center. To test the Rectangles method, we divided the CHI
into a 100 small rectangles, so we got a 100 values by
counting the contours points in every small rectangle.

We used a shallow autoencoder with one hidden layer

which had 100 hidden units, so the shallow autoencoder is
used to encode 50*25 CHI,or 1250 values into 100 values at
first, then it is used to encode 5000 values (100*50 CHI) into
100 values.

The deep autoencoder is based on three shallow

autoencoders. To make the things clear, let us start with a
50*25 CHI, or an Input vector whose length is 1250. The first
shallow autoencoder has 600 hidden units, it is used to
encode the 1250 values into a 600 values. At the end of
training with the training vectors, the first hidden weights'
layer of this shallow autoencoder will be stored as the first
weights' layer in the deep autoencoder, or the first matrix
M1. The second shallow autoencoder is used to encode 600
values into a 300 values, so it has 300 hidden units. To train
this shallow autoencoder, the same training vectors for the
first autoencoder were used, but they were multiplied by the
Matrix M1. After the training, the first hidden weights' layer
of the second shallow autoencoder will be stored as the
second matrix in the deep autoencoder, M2. The third
shallow autoencoder is the last one which will encode the
300 values into a 100 values. This one gives us the last
matrix M3 in the deep autoencoder.

We have used the same general deep architecture with
100*50-CHI, so 5000 values were encoded into 1000, 300,
and 100 gradually.

We considered the Leave_one_actor_out test in the three

methods, using Weizmann dataset. A normal PC was used
(core i3 CPU 2.27GHz, 4GB RAM). The comparison ran in
MATLAB environment, and it included both recognition rate
and TT1S for CHIs with two different sizes: 50*25 and
100*50 pixels. The results are shown in both of Table 1 and
Table 2.

Table -1 :Comparing the results for the three features

reduction methods. The vector length is 1250

Method TT1S Recognition rate
(Leave_one_actor_out)

Rectangles 2.3s 96.8%

Shallow Autoencoder 2.0s 95.7%

Deep Autoencoder 2.2s 95.7%

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1770

Table -2: Comparing the results for the three features
reduction methods. The vector length is 5000

Method TT1S Recognition rate

(Leave_one_actor_out)

Rectangles 2.3s 95.7%

Shallow Autoencoder 2.3s 89.25%

Deep Autoencoder 2.6s 90.32%

4.2 Discussion About The Comparing Results

For a vector length equals to 1250, the results are close

and they are all good. First of all, we can say that using CHIs
as a start was a good idea.

It was expected that the shallow autoencoder needs less

time than the deep autoencoder to encode data, but they
gave the same recognition rate. This gives us a motivation to
make another test with features' vector length of 5000.

Table 2 shows that the deep autoencoder gives a

recognition rate that is little bit better than shallow encoder
when the vector's length increased, but it is not a big
difference. Both autoencoders' recognition rate decreased
remarkably when the vector's length increased, while we did
not notice a big difference for the rectangles method. So
autoencoders might be used for limited steps in feature
encoding.

It is also important to point out that training the shallow

autoencoder takes some time, training the deep autoencoder
takes too much time because of three shallow autoencoders
needed to be trained, the deep autoencoder takes 270
minutes to be well trained for one actor test with vector's
length equal to 5000, but the training time for the shallow
autoencoder takes 44 minutes for similar test, while in the
rectangle method takes only 5 minutes. But training time is
less important than recognition rate or TT1S. The time
needed to train the deep autoencoder made us use
Leave_one_actor_test in this comparison instead of
Leave_one_out test.

However, the most important thing about autoencoders is

that they can be widely used for features' reduction.
Therefore, we do not have to think about the appropriate
method for features' reduction. The half-automated system
composed of CHI+ shallow-autoencoder +NN classifier, gives
a good recognition rate, and it can also be used in real time if
we increase the window-step.

For the proposed algorithm, we have chosen the

rectangles method as a feature reduction method as it gives
the best recognition rate.

4.3 Algorithm Testing

To evaluate the performance of our algorithm, we have

made Leave-one-out test for the 93 video scripts in
Weizmann dataset.

Practically we took a window length M=14, so we get a

total vector of features whose length is 127, distributed as
follows: 100 values from the CHI-features, 26 values from
tracking the movement of the center, and a value represents
the relative of dimensions of the bounding box which
contains the CHI before resizing.

The step between two windows is 5 frames. Window_step

can be modified easily. It should be set according to the
frame rate of the video or according to the needed TT1S as
we will see later.

First, we have used one layer Neural Network (1LNN) as a

classifier that contains only an input layer and an output
layer with no hidden layers. The confusion matrix is shown
in Table -3 and the recognition rate was 96.77%. Then we
have used a Neural Network with one hidden layer (2LNN)
which has 60 hidden units. The recognition rate has
increased to 98.9% and the confusion matrix is shown in
Table -4.

The comparison between the results of the 2LNN

classifier and the 1LNN classifier can be found in Table -5
where we have added TT1S to the results.

In order to calculate TT1S we have chosen "lina_jack.avi"

from Weizmann dataset because it is a long-term video
(relatively) which contains 146 frame, we measured the time
needed to calculate the total result, then we calculated TT1S
because we know that in Weizmann dataset we have 25
frames in one second.

2LNN classifier gives a better recognition rate than 1LNN

Table -3: scaled convolution matrix for 1LNN classifier

B
e

n
d

Ja
ck

Ju
m

p

P
ju

m
p

ru
n

S
id

e

S
k

ip

W
a

lk

W
a

v
e

1

W
a

v
e

2

Bend 9

Jack 9

Jump 7 1 1

Pjump 9

Run 10

Side 9

Skip 1 9

Walk 10

Wave1 9

Wave2 9

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1771

Table -4: Scaled Convolution matrix for 2LNN classifier

B
e

n
d

Ja
ck

Ju
m

p

P
ju

m
p

ru
n

S
id

e

S
k

ip

W
a

lk

W
a

v
e

1

W
a

v
e

2

Bend 9

Jack 9

Jump 8 1

Pjump 9

Run 10

Side 9

Skip 10

Walk 10

Wave1 9

Wave2 9

Table -5: Comparing 1LNN classifier with 2LNN

classifier

NN Layers number TT1S Recognition rate
(Leave_one_out)

1 2.5s 96.77%

2 2.8s 98.9%

Table -6: 2LNN classifier with different window-step

Window step TT1S Recognition rate

(Leave_one_out)

5 2.8s 98.9%

13 0.96s 97.8%

Classifier, but it needs a little more time to calculate the

classification result. In both results, TT1S is still more than 1
second. If we change the window-step from 5 to 13 during
the testing and keep it 5 during the training, we will get a
TT1S of less than 1 second as in Table -6, but recognition
rate will decrease a little bit as the overlapping between the
windows will be only one frame.

Most of the previous works focused only on the

recognition rate, and it is hard to compare the time needed
for classification in the previous works. Table -7 shows a
comparison of our method with the previous works that had
Weizmann dataset for testing and Leave_one_out as a test
method.

Table -7: Comparison with previous works

Method Year Recognition rate

Wu and Shaw [11] 2013 97.78%

Touati & Mignotte [12] 2014 92.3%

Cai and Feng [13] 2015 93.55%

Cheng et al. [14] 2015 94.44%

Tang et al. [15] 2016 97.85%

Our method 98.9%

5. CONCLUSION

In this paper we have presented a new algorithm for

Human Action Recognition from video data. We have tested
our algorithm using Weizmann as dataset and Leave_one_out
as test method, the recognition rate was 98.9%. We have
defined TT1S to evaluate the performance vs. time. The
Proposed method can be applied in real time systems
because we could get TT1S<1s with a recognition rate of
97.8%. We have tested both of shallow autoencoder and
deep autoencoder as features reduction methods, important
comparison and results was presented. The autoencoders
gives a good recognition rate and they can be used widely for
features reduction. A half-automated system with a good
recognition rate can be done using an autoencoder.
Moreover, this paper shows the important results we could
get using NN classifier.

References

[1] Ramanathan, Manoj, Wei-Yun Yau, and Eam Khwang

Teoh. "Human action recognition with video data:
research and evaluation challenges." IEEE Transactions
on Human-Machine Systems 44.5 (2014): 650-663

[2] Chaaraoui, Alexandros Andre, Pau Climent-Pérez, and
Francisco Flórez-Revuelta. "Silhouette-based human
action recognition using sequences of key
poses." Pattern Recognition Letters 34.15 (2013): 1799-
1807.

[3] Bobick, Aaron F., and James W. Davis. "The recognition
of human movement using temporal templates." IEEE
Transactions on pattern analysis and machine
intelligence 23.3 (2001): 257-267.

[4] Ahmad, Mohiuddin, Irine Parvin, and Seong-Whan Lee.
"Silhouette History and Energy Image Information for
Human Movement Recognition." Journal of
Multimedia 5.1 (2010): 12-21.

[5] Jalal, Ahmad, Shaharyar Kamal, and Daijin Kim. "Depth
Silhouettes Context: A new robust feature for human
tracking and activity recognition based on embedded
HMMs." Ubiquitous Robots and Ambient Intelligence
(URAI), 2015 12th International Conference on. IEEE,
2015.

[6] Guo, Kai, Prakash Ishwar, and Janusz Konrad. "Action
recognition from video using feature covariance
matrices." IEEE Transactions on Image Processing 22.6
(2013): 2479-2494.

[7] Kellokumpu, Vili, Matti Pietikäinen, and Janne Heikkilä.
"Human activity recognition using sequences of
postures." MVA. 2005.‏

[8] Foggia, Pasquale, et al. "Exploiting the deep learning
paradigm for recognizing human actions." Advanced
Video and Signal Based Surveillance (AVSS), 2014 11th
IEEE International Conference on. IEEE, 2014.

[9] Baccouche, Moez, et al. "Sequential deep learning for
human action recognition." International Workshop on

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1772

Human Behavior Understanding. Springer Berlin
Heidelberg, 2011.‏

[10] Charalampous, Konstantinos, and Antonios Gasteratos.
"On-line deep learning method for action
recognition." Pattern Analysis and Applications 19.2
 ‏.337-354 :(2016)

[11] D. Wu and L. Shao, "Silhouette Analysis-Based Action
RecognitionVia Exploiting Human Poses," IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 23, no. 2, pp. 236-243, 2013.

[12] R. Touati and M. Mignotte, "MDS-Based Multi-Axial
Dimensionality Reduction Model for Human Action
Recognition," in Proc. of IEEE Canadian Conference on
Compter and Robot Vision, 2014.

[13] Jiaxin Cai and Guocan Feng, “Human action recognition
in the fractional fourier domain,” in 3rd IAPR Asian
Conference on Pattern Recognition (ACPR2015). IEEE,
pp. 1–5, Nov 2015.

[14] Jian Cheng, Haijun Liu, Feng Wang, Hongsheng Li, and Ce
Zhu, “Silhouette analysis for human action recognition
based on supervised temporal t-sne and incremental
learning,” IEEE Transactions on Image Processing , vol.
24, no. 10, pp. 3203–3217, Oct 2015.

[15] Jiaxin Cai et al., "Learning zeroth class dictionary for
human action recognition." Image Processing (ICIP),
2016 IEEE International Conference on. IEEE, 2016.

 ‏

