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Abstract - The basic principle of activee noise 
control (ANC) is to create a secondary acoustic noise which 
has the same amplitude but opposite phase compared with 
the primary noise in order to attenuate noise in the controlled 
noise region. This paper presents a fuzzy neural network 
based filtered-X least-mean-square (LMS) algorithm for ANC 
system. The saturation of the power amplifier in ANC system 
is considered. A fuzzy neural network ANC system for 
compensating the saturation is proposed. An on line dynamic 
learning algorithm based on the error gradient descent 
method is carried out. The experimental models of ANC in real 
time were presented.  

 
Key Words: active noise control, adaptive system, fuzzy neural 
network, real time system. 
 

1. INTRODUCTION 
 
 Acoustic problems in the environment have gained 
attention due to the tremendous growth of technology that 
has led to noisy engines, heavy machinery, pumps, high speed 
wind buffeting and a myriad other noise sources. Exposure to 
high decibels of sound proves damaging to humans both in 
physical and psychological aspects. The problem of 
controlling the noise level in the environment has been the 
focus of a tremendous amount of research over the years [1, 
2, 7, 9].   

 Several experiments and simulations are used to 
demonstrate the various approaches in ANC system. The 
acoustic and electrical control basis of ANC system is 
introduced in [1, 2, 3]. Noise cancellation in headphones is 
introduced in [4]. The filtered-x least mean square (FXLMS) 
algorithm is a popular adaptive filtering algorithm using a 
finite impulse response (FIR) filters [1, 2, 7, 12], because it is 
simple and has relatively low computational load. The 
development of digital signal processing (DSP) hardware 
allows more sophisticated algorithms to be implemented in 
real time to improve the system performance [3, 9, 16]. 
Linear ANC systems have been successfully used to cancel 
noise in air conditioning duct systems, handsets, and others 
[1, 2, 3, 8, 9]. However, in a practical ANC system, the 
secondary path and primary path of the ANC system may 
exhibit nonlinear behaviors. The ANC system has to be 
adaptive because of changes in environment, degradation of 
system components, and alteration of the noise source. The 
use of adaptive Volterra filter in ANC system has been 
presented in [5].  The main drawback of this approach is that 
the size of the filter increases exponentially with the number 
of inputs and the computation task is extremely heavy.  The 

use of neural networks has been suggested to cope with the 
case of nonlinear system [5-8]. The major problem with 
neural network based ANC system is its relatively slow 
learning process. In references [9-16] fuzzy-neural and 
recurrent neural networks have also been used in nonlinear 
ANC system. Since the fuzzy neural network is a local 
approximate model, the adaptive process can be accelerated.  

 This paper presents theoretical and experimental 
modeling  of an ANC system in free space by using fuzzy 
neural network structure. An adaptive feedback ANC system 
using fuzzy neural network with saturation of the power 
amplifier is proposed, where the model of fuzzy neural 
network is simplified to meet the characteristic of an ANC 
system. Real time identification experiments are performed 
using a TI6713 floating point DSP board. The applications 
considered in this paper are headsets, hearing protectors and 
other assistive hearing devices. The remainder of the paper is 
organized as follows. Section 2 describe the ANC system and 
its adaptive algorithm. In section 3, the proposed ANC system 
is presented. Section 4 demonstrate real time results of the 
proposed ANC system. The conclusions of the work done as 
well as suggestions for further research are given in section 5. 
  

2. TRADITIONAL ANC SYSTEM 
 

 The traditional adaptive feedback ANC system is 
presented in figure. 1.  In figure. 1, the primary noise x(k), 
generated by the noise source, propagates through the 
primary path P(z). The secondary noise y(k), generated by the 
ANC system, propagates through the secondary path S() and 
G(z) where S() stands for the saturation of the ANC system. 
The primary noise and the secondary noise are combined to 
produce the residual noise in the region where the noise is to 
be controlled. A microphone is placed in this region to 
measure the residual noise e(k).  

 The fuzzy neural network is used to produce the 
secondary noise y(k). It is trained such that the residual noise 
e(k) is minimized. The introduction of the secondary-path 
transfer function in the system using the LMS algorithm may 
lead to instability [16]. This is because, it is impossible to 
compensate for the inherent delay due to G(z) if the primary 
path P(z) does not contain a delay of equal length. Also, a very 
large FIR filter would be required to effectively model 1/G(z). 

This can be solved by placing a model )(ˆ zG  of the secondary 

path G(z) in the reference signal path to the weight update of 
the LMS equation. 
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Figure 1. Diagram of adaptive feedback ANC system using 
fuzzy neural network 

 
3. THE PROPOSED ANC SYSTEM 
 

 The proposed feedback ANC system is presented in figure 

2, where ()Ŝ  is a model of S() and is used to compensate for 

the saturation of the power amplifier. In figure 2, the residual 
noise is given by 

 )()()( kvkdke                                   (1) 

and the secondary noise can be approximated as 
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where gj are the coefficients of the Jth order FIR filter G(z). 
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Figure 2. The proposed ANC system with saturation 
compensation 

 

 The considered fuzzy neural network is shown in figure 3, 
where W is the weights of the fuzzy neural network. Several 

neural networks, such as, multi-layer perceptron, radial basis 
function networks, and fuzzy neural network (FNN), etc. can 
be selected. In this paper, the FNN is used as a non-linear 
filter. A single input and single output model is considered 
here for convenience. The node in layer 1 is the input node 
that directly transmits the input signal to the next layer. The 
layer 5 is the output layer. The nodes in layer 2 are “term 
nodes, G” which act as membership functions to express the 
input fuzzy linguistic variables.  Here, the membership 
function is a Gaussian function, in which the mean value m 
and the variance . The nodes in layer 3 are called “rule 
nodes, R” which represent the fuzzy rules. The nodes in layer 
4, (N) perform the normalization of the firing strengths 
coming from layer 3. In which follows, the symbol 

)(k

id denotes the ith input of the ith node in the kth layer, and 

the symbol )(k

ia  denotes the output of the ith node in the kth 

layer. 
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Figure 3. Fuzzy neural network 
 

Layer 1: input layer  
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Layer 2: the functions of the nodes are defined as follows: 
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where mij and ij are respectively the mean and the width of 
the Gaussian membership function. 

Layer 3: the nodes in this layer are rule nodes. The rule 
nodes perform a fuzzy AND operation to calculate the firing 
strengths, 

)(ˆ)( )3()3( kdka
i

ii                                (5) 

Layer 4: the nodes in layer 4 perform the normalization of 
the firing strengths coming from layer 3, 
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Layer 5: the output node integrates all the normalized 
firing strengths from layer 4 with the corresponding 
singleton constituents and acts as a defuzzifier: 
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and )(kw  represents a column vector of all of the network 

weights, 

 Tn kwkwkwkw )(,),(),()( 21   

where n is the number of fuzzy rules. 

In order to cope with the nonlinearity in the system, we 
use fuzzy neural network in figure 3 with integration function 
and activation function such as (8) and (9) respectively, 

)()]([)( )4( kAkwknet T
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Define discrete Lyapunov function: 
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2

1
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The network weight update is based on a stochastic 
steepest descent which incrementally reduces the 
instantaneous squared error in the output of the neural 
network as, 
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where  is the learning rate. Applying the chain rule to (11):  
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where A(4)(k) is the vector of the outputs of the layer 4. 

Thus, according to (11), the network weights update is 
computed as 
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where  TnkakakakA )1(,),1(),()( )4()4()4()4(    

The convergence condition of the proposed ANC system 

 Let V(k) as (10) be the discrete-type Lyapunov function 
candidate. Due to the training process, we have 
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 The error difference resulting from the learning can be 
represented by 
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If the learning rate ( > 0), is chosen as 
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then 0)(  kV . Therefore, the proposed ANC system is 

locally convergent. 
 

4. REAL TIME RESULTS 
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Figure 4. The ANC experiment setup 

 The real time experiment setup is shown in figure 4. A 
TI6713 floating point DSP board is used to implement the 
ANC system. The primary noise source is generated by a 
frequency generator. The error microphone is located at the 
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desired quiet zone, and is used to provide the residual noise 
signal to the DSP via a pre-amplifier and an analog-to-digital 
converter. The anti-noise signal, provided by the ANC system 
which is implemented on the DSP board, is amplified by a 
power amplifier before being applied to the secondary 
speaker. The secondary-path transfer function is estimated 
experimentally as, 

Fst

v

z

A
zG

.
)(ˆ


                                           (17) 

and the results are given in the table 1, where f  is the 
frequency of the primary noise which is single sinusoidal 
signal, Fs is the sampling frequency, Av is the gain of G(z), t is 
the acoustic propagation time from the secondary speaker to 
the error microphone. G(z) includes the digital-to-analog 
converter, the reconstruction filter, the power amplifier, the 
secondary speaker, the acoustic path from the secondary 
speaker to the error microphone, the error microphone, the 
pre-amplifier, the anti-aliasing filter, and the analog-to-digital 
converter. Note that the distance between the secondary 
speaker and the error microphone is 50cm. In this 
experiment, the estimated secondary-path transfer function 
is calculated by measuring delay time and attenuation of 
residual noise which is transmitted from the secondary 
loudspeaker to error microphone. 

 
Table 1. The estimated secondary-path transfer function 

 

f(Hz) )(ˆ zG  

0 - 300 0.5z-37 

300 - 500 0.5z-38 

500 - 800 0.5z-39 

800 - 1200 0.5z-41 

1200 - 1700 0.5z-42 

1700 - 2100 0.5z-43 

 

 As mentioned previously, modeling ANC secondary path is 
carried-out prior to control task execution. In this 
experiment, narrow band noise sources include single 
sinusoidal signal and multi-sinusoidal signal was applied to 
excite the secondary path. Sampling frequency of 8000 Hz 
was used throughout the experiment, the learning rate for W 
is chosen as  = 1. Results of ANC system using fuzzy neural 
network implemented online on DSP board is shown in figure 
5 and figure 6. When the ANC system is activated, mean 
square error (MSE)  of the residual noise is attenuated about 
39.2 dB and 29 dB respectively. This demonstrates that the 
ANC system using fuzzy neural network works effectively 
with narrow band noise sources. 

 

Figure 5. MSE of residual noise (single sinusoidal signal) 
 

 

Figure 6. MSE of residual noise (multi- sinusoidal signal) 
 
Evaluate the effectiveness of the proposed ANC system 

  

Figure 7. MSE of residual noise of the proposed ANC system 
 

This section present experimental result to examine the 
efficiency of the proposed ANC system with saturation 
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compensation (where amplitude of secondary noise is 
greater than amplitude of amplifier power), the result is 
shown in figure 7. Remark that the ANC system with 
saturation compensation operates effectively (solid line) even 
when the noise level is high, the residual noise spectrum is 
attenuated about 23 dB. And the ANC system without 
saturation compensation  could not operates effectively when 
the noise level is high. 

 In addition, in order to test the effectiveness of the 
proposed ANC system, we investigated the attenuation of the 
residual noise in radius of the quiet zone (center of the quiet 
zone at the error microphone). In this experiment, we use 
another microphone to measure the attenuation of the 
residual noise in the quiet zone. Results are shown detail in 
table 2. For single frequency noise sources, the attenuation of 
residual noise has decreased from 5 dB to 42 dB in the quiet 
zone; for multi-frequency noise sources, the attenuation of 
residual noise has decreased from 1 dB to 36 dB in the quiet 
zone. 

Table 2. The attenuation of residual noise 
 

R (cm) 0 5 10 15 20 25 30 35 40 45 50 

S (dB) 39 37 34 32 30 22 16 14 12 11 5 

M (dB) 36 29 22 17 15 13 10 7 4 3 1 

 
where R - radius of the quiet zone; S -  single frequency 
noise sources; M - multi- frequency noise sources. 
 

5. CONCLUSIONS 
 
  Based on the fuzzy neural network technique, we develop 
a new ANC system with saturation compensation. The 
learning algorithm is carried out using the gradient steepest 
descent method. 

 Real time results are provided to illustrate the 
performance of the proposed ANC system in both single 
frequency and multi frequency cases. The robustness of the 
proposed ANC system against the secondary path transfer 
function is also shown. 

 Results on real time system show that the proposed ANC 
system operated effectively. 
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