
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 541

Android Security: A Survey of Security Issues
And Defenses

Persin Kaur Granthi1, Mrs. S. M. Bansode2

1Student, Dept. of Computer Science & Engineering, SGGSIE&T, Maharashtra, India
2Professor, Dept. of Computer Science & Engineering, SGGSIE&T, Maharashtra, India

---***---

Abstract - Android is becoming very popular nowadays and
respective devices have acquired huge market share due to the
openness of Android architecture and the availability of a
variety of the applications provided. As a result, the
smartphones users are increasing at a faster rate and it
becomes prohibitive for application marketplace, such as
Google Play Store, to verify whether an application is genuine
or malicious. Due to the increase in popularity of the Android
devices, the malware developers have been attracted, causing
the big rise of the Android malware applications. The
consequence is that the mobile users have to decide for
themselves whether an application is secure to use. The recent
studies and surveys have shown that over 80% of applications
in markets request to collect data irrelevant to the main
functions of the applications, which could cause personal
information leakage. Generally, the stealth techniques, such as
encryption, code modification, are capable of generating
various forms of known malware. The single approach may be
ineffective against the malware techniques, so multiple
approaches can be used for effective detection. Hence, the
researchers and industry sources have proposed many security
mechanisms for Android devices Based on the mechanisms and
techniques which are different in nature and used in proposed
works, they can be classified into specific categories. In this
survey paper, we discuss the security threats for Android as
well as the solutions and try to categorize the works and their
functionalities.

Key Words: Static analysis, dynamic analysis, PII
(Personally Identifiable Information), privilege escalation,
Dalvik Virtual Machine, sandboxing, malware, native libraries

1. INTRODUCTION

Over the last few years, Android has gained a tremendous
number of users since the first introduction in 2008. As per
the leading information technology research and advisory
company, Gartner [1], in the smartphone operating
system (OS) market, Google's Android extended its lead by
capturing 82 percent of the total market in the fourth
quarter of 2016. The rapid increase of Android applications
provides an ever-growing application ecosystem. Mobile
applications are becoming popular because of the features
such as ease of use, robustness and high availability. The
current market offers a variety of applications ranging from
gaming, health sector, and government to personal security,

and business [2] and users depend on mobile devices and
applications at a large scale.
However, Android devices are becoming extremely
attractive and useful target for the security attacks on a large
scale as the devices are used for sensitive personal
information storage more often than other personal devices
such as laptops and desktops. Consequently, a malicious
third-party application can not only steal private
information, such as all the contacts, messages, and location
from its user but can also impersonate the user [3]. Due to
increasing number of the applications introduced, it is tough
for Google Play Store to thoroughly verify if an application is
valid or malicious. Therefore, mobile application users have
to decide for themselves whether an application has secure
usage. Also, unlike iOS, the rooting or jail breaking is not
needed for Android device owners to install applications
from “unknown sources”. As per the CNBC news report, an
Android malware breaches the security of more than 1
million Google accounts [4].

The Android applications growth at higher rate, and the
existing security vulnerabilities in Android encourage
malware developers to take advantage of such vulnerable OS
that may harm the respective organization’s reputation [5].
Moreover, the malware obtain a complete control of the
device, steal user’s sensitive data such as bank details, or
send messages on behalf of the user [6].
According to the security vulnerability data source, CVE
details [7], number of Android vulnerabilities is present
which can occur at any layers of Android OS stack. Realizing
these shortcomings in the current Android applications
scenario, many efforts have been put forward for addressing
the security related issues [8].

Section 2 describes the architecture of Android OS and
application. The Android security mechanism and its
security issues are described in in Section 3 and 4
respectively. Later, we describe the security mechanism and
solutions in Section 5. The comparison results of the
solutions are shown in section 6. Finally, we conclude in
Section 7.

2. ARCHITECTURE-ANDROID OS & APPLICATIONS

Figure 1 describes the architecture of the Android OS and
consists of the components described as follows.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 542

2.1. The Framework Architecture

The Android architecture is built on a Linux kernel. The
framework consists of following components:

Applications

As depicted in Figure 1, the application layer is present at the
top of the Android software stack.

Application Framework
Application framework includes the following major services
[10]:

Figure 1: Android operating system architecture

 Activity Manager: Activity Manager gives information
about, and interacts with, activities, services, and the
containing process. [10].

 Content Providers: Content providers are used to
manage the access to the applications data repository.
Data encapsulation and security is provided. The data
and service sharing is provided by content provider
[10].

 Resource Manager: This service provides access to the
resources such as files, static contents, and UI layouts.
This service makes it possible to maintain application’s
resources independently [10].

 Notification Manager: Notifications Manager manages
the application alerts and notifications generated for
user.

 View System: This service is an extensible set of views
used to create application user interfaces [10].

Android Runtime

This Android runtime describes a key component called
Dalvik Virtual Machine (DVM), which is a Java Virtual
Machine (JVM) specially designed and optimized for
Android.. The Java development environment includes a
number of classes that are contained in the core Java
runtime libraries [10].

Libraries: The Android’s native libraries were developed on
top of the Linux kernel. This layer allows the device to
handle different types of data. It provides different libraries
written in C or C++ useful for the well-functioning of Android
operating system. Examples of some native libraries include
the SQLite database engine used for data storage purposes,
OpenGL used to render 2D or 3D graphics content to the
screen, and SSL libraries for Internet security [10].

Kernel: The Linux kernel forms the base of the entire
system. The kernel also acts as an abstraction layer between
the hardware and other software layers. The Linux kernel
provides the fundamental system functionality such as
process management, memory management, and device
management. The Kernel also provides an array of device
drivers which is useful while interfacing the Android with
peripheral devices [10].

2.2. The Framework Level Permissions

To maintain security for the device and users and to restrict
an application from accessing the sensitive functionality like
network, contacts/SMS and GPS location, Android requires
the applications to request permissions before the
applications can use certain features. To accomplish this
purpose, it provides permission-based security model in the
application framework. Developers declare the permissions
needed using the ‘uses−permission’ element in
AndroidManifest.XML [11]. The permissions are divided into
the following protection levels [12].

 Normal: Normal is the default permission value and

has a minimal risk for the user, system application or
the device. These are granted at the install time.

 Dangerous: These permissions are within the high -
risk group due to their capability of accessing the
private data and device control that can impact the
user negatively. A user has to accept the installation of
dangerous permissions at the install time.

 Signature: These permissions are granted only if the
requesting application is signed with the same
developer certificate of the application that declared
the permissions. They are granted automatically at the
install time if the certificates match.

 signatureOrSystem: These permissions are granted if

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 543

the requesting application is signed with the same
certificate as the Android system image or with an
application that declared these permissions.
Generally, the developers use ‘Signature ‘protection
level as the same is sufficient for an application. They
are granted automatically at installation time.

2.3. Application Structure

Android applications are written primarily in the Java
programming language. In this subsection, the Android
application package structure and its main four components
are explained.

The apk (Application Package) structure

Figure 2 shows the Android APK structure. An Android
application consists of an archive which is packed as a
package with .apk.
Some specific components in application files play an
important role and are as follows:

 META-INF directory – The directory includes

MANIFEST.MF, which contains a cryptographic
signature and makes the entire contents of the
distribution package validated.

 The lib directory - contains the compiled code, which is
specific to a software layer of a processor.

 Assets directory – It contains the application’s assets,
which can be retrieved by Asset Manager.

Figure 2: Android APK file structure

AndroidManifest.xml- It is a key file within application
structure, which is an additional Android manifest file,
describing the name, version, access rights, and
referenced library files for the application [13].

The components of the application

Figure 3 shows the Android application components and
related interactions.
The application components are classified into four different
types [13]. Each component is provided for a specific
purpose and lifecycle that defines how the component is
created and destroyed.

 Activities: Activity is an individual user interface screen

in an Android Application. For example, it consists of
placing the visual elements called Views (also known as
widgets) and performing various actions by interacting
with it.

Figure 3: Android components and their interactions

 Services: Services are used to perform the processing
parts of your application in the background. Services
are typically used for processes that take a significant
period of time such as playing music, downloading data
or uploading photos.

 Content Provider: A content provider is a component
for managing a data set. Content providers in Android
provide a flexible way to make data available across
applications. A simple example of the content provider is
the Contacts Manager application.

 Broadcasting: Broadcast receivers are one of the
Android application components that are used to
receive messages broadcasted by the Android system or
other Android applications.

3. ANDROID SECURITY MECHANISM

3.1. Application sandboxing

Application sandboxing is also called as application
containerization. It is an approach to Mobile Application
development and Management that limits the environments
in which certain code can execute. Android applications run
in an isolated area of the system, known as a sandbox, that
does not have access to the rest of the system’s resources,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 544

unless and until the access permissions are explicitly granted
by the user during the application installation. To protect the
application’s data from unauthorized access, the Android
kernel implements the Linux Discretionary Access Control
(DAC) to manage and protect the device’s resources to be
misused. Each application process is protected with an
assigned unique ID (UID) within an isolated sandbox [16].

4. Android Inter-Component Communication(ICC)

Android allows applications to communicate with each other
through a well-defined Inter-Component Communication
(ICC) mechanism or Binder. Android middleware mediates
the ICC between application’s components. The Binder or
ICC takes care of migration of the execution of a request from
the requester to the target process transparently to the
applications. Applications can call the components or
services of other applications as service [17].

5. ANDROID SECURITY ISSUES AND THREATS

The permission-based mechanism is provided for Android
applications security that regulates the third-party Android
applications access to critical resources on the device. This
mechanism is highly criticized for its coarse-grained control
of application permissions and the inefficient permission
management, by developers, and end-users. For example,
users are allowed to either accept all permission requests
from an application to install it or reject the application
installation. The section describes the main security issues
of the Android which leads to leakage of user information
and leads to user’s privacy loss [17].

5.1. The data leakage

The leaking Android application may place an information
that is sensitive for the user in the insecure location in the
device or may send the device identification information e.g.
application metadata such as network details. This insecure
location of the device may be accessible to other malicious
applications on the same device. The sensitive data or
information leaked thus causes the device to be is a critical
state. The exploitation of this vulnerability is very easy as an
attacker can gain an access to the part of the device where
the sensitive data is being stored. The impacts of the data
leakage of an Android device are severe. As per a security
researcher group news website [18], 58% of Android devices
have privacy leaks and around 3% have PII (personally
identifiable information) leakage.

5.2. Privilege Escalation

The security deficiencies of Android’s permission
mechanism may lead to privilege escalation attacks caused
by compromised applications. The authors describe the
privilege escalation as [19]: An application with fewer

permissions (a non-privileged caller) is not restricted to
access components of a more privileged application (a
privileged callee).An example of privilege escalation can be
given as – a local malicious can execute an arbitrary code in
the kernel without having the privilege to do so. This may
lead to complete compromise of the operating system
causing corruption of the operating system and complete
device repair. As per the Common vulnerabilities and
exposures database (CVE) [20], critical privilege escalation
vulnerability was found in Android versions 6 and above.
The privilege escalation breach in android put millions of
users at risk of smartphone hijacking [21].

5.3. Repackaging of Applications

The process of disassembling/decompiling of .apk files using
reverse-engineering techniques and adding (injecting)
malicious code into the main source code is known as the
repackaging of the Android apps. For an Android user, it
becomes difficult to distinguish between a repackaged
malicious application and a normal application because the
repackaged application usually appears to function in the
same way as the legitimate one. The repackaging steps are as
follows [22]:
 Modification point search: The Android activity

information, UI layout, and application execution flow
are gathered and analyzed for the points at which code
is inserted. Logcat tool [23] can be used to gather the
activity names and obtain information on activities that
are run during app execution. Then the OnCreate
function of the activities can be decompiled in order to
obtain the UI information and XML information used in
the UI.

 Decompilation: After extracting the DEX file in the APK
file using the dextojar tool [24], a disassembler tool
called baksmali [25] is used to generate the smali source
code.

 Code injection and modification: The code injection
consists of the insertion of the code containing arbitrary
Dalvik VM instructions at the modification point of
existing code.

 Manifest change: The package name is changed in the
application manifest. During this, the application can be
registered on the Android Market without conflicting
with existing applications.

 Self-signing: The modified application is then self-signed
to complete the repackaging.

5.4. Distributed Denial of Service (DDos)

In denial of service attack, the attacker seeks to make a
device or resource unavailable to its intended usage by
disrupting the services of host device temporarily or
indefinitely. As per the Symantec Internet Security Report
[26], about 7.2% Android applications suffer the denial of
service attack.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 545

6. ANDROID SECURITY SOLUTIONS

For the Android security, some solutions have been
proposed and this section tries to categorize the solutions
based on the objective of the system: Prevention-based,
Analysis-based and Runtime Monitoring

6.1. Prevention-based Solutions

The subsection covers the works which focus on application
repackaging attacks (code modification or code injection)
and reverse engineering (code analysis).

Kirin

Figure 4 shows the Kirin based software installer flow and
its components.
Kirin aims at risk assessment and uses static mechanism. A
security policy enforcement policy is used in Kirin [27]. Kirin
uses a set of predefined security rules on applications
requested permissions to find matched malicious permission
requests and characteristics. Here, the rules are defined
based on those permissions that are sensitive and leads to
misusage of permissions and dangerous activities.

Figure 4: Kirin based software installer flow and its
components

A static analysis tool called PScout, which is explained in the
below section, is used to extract all the permission
specifications for Android apps without modifying the apps.
Using this, the user can make a real-time decision to install
the app or not.

AppInk

Figure 5 shows AppInk architecture and its components.

Figure 5: Overall AppInk architecture

AppInk aims at risk assessment and uses a dynamic
mechanism to mitigate application repackaging. Zhou et al.
[28] proposed and developed a graph-based dynamic
watermarking mechanism for Android apps.
A tool called AppInk is developed, which takes the source
code of an app and a watermark value as inputs, in order to
automatically generate a new app with a transparently-
embedded watermark and the associated manifest
application. The system is tried to improve through
embedding software watermarks dynamically into the
running state of an app to represent the ownership of
developers. After embedding the watermarks, the
repackaged app can be verified by an authorized verifying
party and embedded watermarks can be recognized through
the manifest app without any user effort and interaction. The
embedded code segments can be later recovered in order to
extract the watermarks values. Figure 5 shows the overall
AppInk architecture and its related components.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 546

6.2. Analysis-based Solutions

In this solution, the main goal is to use static and dynamic
analysis to detect security-sensitive and malicious behaviors
of applications. The works in this category focus at the
malicious behavior detection, application similarity
detection in order to detect repackaged applications,
misusing the granted permissions and detecting application
vulnerabilities. The subsection is aimed to review the works
in any of the above subcategories.

PScout

Figure 6 shows architecture of PScout. PScout aims at
application similarity detection to check for repackaging
with the help of static mechanism.
PSCout [29] is a tool which is proposed to extract the
permission details (specifications) of Android OS source
code. The tool works on a call graph which is constructed
from the API calls of the application.

Figure 6: PScout

The permission specifications are extracted through the
repeatability analysis between API calls and call graph
permission checks that are constructed from the Android
framework's code bases. Figure 6 gives a higher level
summary of the PSCout analysis flow.

RiskMon

Figure 7 shows the RiskMon architecture. RiskMon aims at
malicious behavior detection by using dynamic mechanism.
The RiskMon [30] tries to answer the question “are those
behaviors necessarily inappropriate?” RiskMon is an
approach for coping with this challenge and presenting a
continuous and automated risk assessment framework. It
generates a risk assessment baseline that captures
appropriate behaviors of applications. The important part of
the framework is user’s perceptions on the application.
Initially, it collects the user’s expectations on the installed
applications on the device and the permission ranking of the
groups in terms of their relevancy to the corresponding
application. Then, based on the information gathered from
the user, the risk assessment baseline for the applications is
built.

Figure 7: RiskMon

Finally, using the baseline generated, RiskMon ranks
installed applications based on the risk of the
application's interactions, which is measured by how
much it deviates from the risk assessment baseline.

Runtime Monitoring Solutions

Each Android application is sandboxed, i.e., it is
running in its own instance of Dalvik VM, and an inter-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 547

process communication (IPC) mechanism allows the
application to communicate and share. In the
permission mechanism, each service or resource is
associated with a certain unique permission tag, and
each app must request the permissions to the Android
services present on the device which it needs at
installation time. Whenever an application requests
access to a specific service/resource, Android runtime
security monitor checks whether the application has
the required permission tags for that particular
service/resource it is asking for. In addition to
privilege escalation protection, information leakage
can be monitored too.

The section studies the works based on app activity
monitoring and permissions accesses. Existing or
proposed works in this category continuously run on
a device to either prevent, detect malicious activity, or
enforce a fine-grained policy.
Crowdroid

Figure 8 shows the Crowdroid architecture.Crowdroid
[31] is a behavior-based malware detection system. A
crowdsourcing framework is used to detect the
anomalously behaving applications through a
crowdsourcing framework. A framework is proposed
by authors to analyze the behavior of Android
applications which is useful to distinguish between
applications that have the same names and versions
but behave differently.

Figure 8: Crowdroid Architecture

 It has two components, a lightweight client
application that needs to be installed on devices of
users and a malware detection server which is
remotely located. The application records the
behavior of the installed applications such as system
calls and sends them as a log file to the centralized
remote server. The system calls are recorded through
a system utility called Strace. The log file contains the
device information, list of installed applications, and
behavioral data.

The remote server will be responsible for parsing the
data and creating a system call vector per interaction
for users within their applications. Finally, the data
clustering occurs by 2-means partition clustering to
detect whether the applications are valid or malicious.

Paranoid Android

A security check system is proposed in Paranoid
Android [32] that is applied to a remote security
server (cloud-based detection framework) that host
exact replicas of the phones in virtual environments.
The main feature of the Paranoid Android is that the
checking process from the user device is moved to a
remote server. The main reason behind the security
checks on a remote server is the lack of enough
computational resources and battery consumption.

A two-stage process is followed as a part of security
check mechanism. In the first stage, the app
monitoring is performed and the same is followed by
the device. In this stage, the app’s activities are
monitored and logs are collected and transferred to
the server. The log files are sent only if the device is
awake to avoid and reduce the log file transfer
overhead. The second stage compromises of analysis
of the collected logs from devices. Paranoid Android
uses a ClamAV based antivirus [33] for file scanning.
In addition to this, PA does an analysis to detect
memory corruption attacks. The scalability is
provided for the systems running and replicas
present.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 548

7. COMPARISON OF THE SECURITY SOLUTIONS

Table 1 below compares the Android security solutions.

Table 1: Comparison of the security solutions for Android

8. CONCLUSION

Along with the increasing prevalence of Android
smartphones, the number of Android applications
including malware is increasing at a faster rate. In
spite of the present Android security mechanisms, the
malware takes advantage of the Android security
holes to misuse the granted resources. Manual
analysis has become infeasible due to the exponential
increase in the number of unknown malware samples.
The proposed works are primarily behavior-based
and their main contribution is tracing the
applications' system calls and analyzing the activities
to restrict them from high-risk activities. Therefore,
the paper tries to analyze the proposed works based
on the nature of the solutions suggested for the
Android security issues.

REFERENCES

[1] Gartner, in” Gartner Says Worldwide Sales of
Smartphones Grew 7 Percent in the Fourth Quarter of
2016”
[2]Number of applications available in leading app
stores as of June 2016, http://www.statista.com/
[3]Recent android malware, in
http://www.symantec.com/content/en/us/enterprise/
media/securityresponse/whitepapers/motivations_
of_recent_android_malware.pdf
 [4] Android malware breach,
http://www.cnbc.com/2016/12/01/android-

Malware-breaches-security-of-more-than-1-million-
google-accounts.html
[5] Android applications worldwide survey,
https://www.appbrain.com/stats/number-of-android-
apps
[6] Botnets, https: // www.mcafee.com/resources/
white-papers/wp-new-era-of-botnets.pdf
[7] CVE, in https://www.cvedetails.com/vulnerability-
list/vendor_id-1224/product_id-19997/Google-
Android.html
[8] W. Enck, “Defending users against smartphone apps:
Techniques and future directions,” in Proc. of the 7th
International Conference on Information Systems
Security (ICISS’11), Kolkata, India, LNCS, S. Jajodia and C.
Mazumdar, Eds., vol. 7093. Springer Berlin Heidelberg,
December 2011, pp. 49–70.
[9] Android developer’s guide,
https://developer.android.com/guide/platform/index.h
tml
[10] Nikolay Elenkov, in Android Security Internals - An
in-depth guide to Android’s security architecture
[11]Add permissions to the Manifest,
https://developer.android.com/training/permissions/d
eclaring.html
[12] Android protection-Level,
https://developer.android.com/guide/topics/manifest/
permission-element.html
[13] Android components fundamentals, http://
developer.android.com/guide/components/fundamenta
ls.html
[14] Android security,
https://source.android.com/security

Comparison of security solutions for
Android

Solutions

Objective of the solution Mechanisms Properties

Preve
ntion-
based

Analysis-
based

Provides
Detection Static Dynamic

Android
system

calls

Provides
Recomme

ndation

Crowd
sourci
ng -
based

OS
Modifi
cation

Tool

Kirin ✓ ✓ ✓

AppInk ✓ ✓

PSCout ✓ ✓

RiskMon ✓ ✓ ✓ ✓

Crowdroid ✓ ✓ ✓ ✓ ✓ strace

Paranoid
Android

 ✓ ✓ ✓ ✓
Clam
AV

https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 549

[15] Google android documents, android application
sandboxing mechanism,
http://developer.android.com/training/articles/security-
tips.html.
[16] Thomas Bl¨asing, Leonid Batyuk, Aubrey-Derrick
Schmidt, “An Android Application Sandbox System for
Suspicious Software Detection”, Available at:
semanticscholar.org
[17] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay
Ganmoor, Manoj Singh Gaur,
Mauro Conti, and Muttukrishnan Rajarajan,” Android
Security: A Survey of Issues, Malware Penetration, and
Defenses”, IEEE COMMUNICATION SURVEYS & TUTORIALS,
VOL. 17, NO. 2, SECOND QUARTER 2015
[18] Android app data leakage,
http://www.appstechnews.com/news/2016/oct/25/resear
ch-reveals-ios-and-android-app-data-leakage-and-what-it-
means-enterprises/
[19] Privilege Escalation,
https://www.researchgate.net/publication/220905164_Priv
ilege_Escalation_Attacks_on_Android
[20] CVE-2017-0415, in
http://www.cvedetails.com/cve/CVE-2017-0415/
[21] Android security breach,
http://www.telegraph.co.uk/technology/internet-
security/11788184
[21] Android-security-breach, Android-security-breach-
puts-millions-at-risk-of-smartphone-hijacking.html
[22] Jin-Hyuk Jung, Ju Young Kim, Hyeong-Chan Lee,
Jeong Hyun Yi, in
https://link.springer.com/article/10.1007/s11277-013-
1258-x
[23] Logcat tool,
https:// developer.com/studio/command-line/logcat.html
[24] dex2jar tool,
https://sourceforge.net/p/dex2jar/wiki/UserGuide/
[25] Reverse Engineering, http://tools.kali.org/reverse-
engineering/smali
[26]Symantec Internet Security Report, in
https://www.symantec.com/content/dam/symantec/docs/
reports/istr-21-2016-en.pdf
[27] William Enck, Machigar Ongtang, and Patrick
McDanielSystems and Internet Infrastructure Security
Laboratory, Department of Computer Science and
Engineering, The Pennsylvania State University, University
Park, PA 16802, in ”On Lightweight Mobile Phone
Application Certification”
 [28] Wu Zhou, Xinwen Zhang, Xuxian Jiang AppInk,
“Watermarking Android Apps for Repackaging Deterrence”
[29] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang and David
Lie, in “PScout: Analyzing the Android Permission
Specification”
[30] Yiming Jing, Gail-Joon Ahn, Ziming Zhao, and Hongxin
Hu, in “RiskMon: Continuous and Automated Risk
Assessment of Mobile Applications”
[31] Iker Burguera and Urko Zurutuza, “Crowdroid:
Behavior-Based Malware Detection System for Android”

[32] Philip Homburg, Kostas Anagnostakis, Georgios
Portokalidis, “Paranoid Android: Versatile Protection for
Smartphones”
[33] Antivirus engine, https://www.clamav.net

http://tools.kali.org/reverse-engineering/smali
http://tools.kali.org/reverse-engineering/smali

