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This paper presents an Ant Colony Optimization 
(ACO) based design methodology for improving the 
Efficiency (Eff) besides reducing the Temperature Rise 
(TR) of Induction Motor (IM). ACO is inspired from the 
foraging behaviour of ants, and in particular, how ants can 
find shortest paths between food sources and their nest. It 
does not require initial values for the decision variables 
and uses a stochastic random search that is based on the 
chemical pheromone trail so that the derivative 
information is unnecessary. Among the number of design 
variables of the IM, seven variables are branded as 
primary design variables and the ACO based design 
strategy is built to optimize the chosen primary variables 
with a view to obtain the global best design. The 
developed methodology is applied in solving two IM 
design problems and the results are presented with a view 
of exhibiting the superiority of the developed algorithm. 

 

Keywords: Induction Motor, Ant Colony Optimization 
(ACO).  
 

1. INTRODUCTION 
Induction motors (IM) are the most widely used 

in domestic, commercial and various industrial 
applications. Especially, the squirrel cage IM is 
characterized by its simplicity, robustness and low cost, 
making it more attractive and hence captured a leading 
place in industrial and agricultural sectors. As millions of 
such motors are in use in various sectors, they consume a 
considerable percentage of overall produced electrical 
energy. The ever mounting pressure of oil crisis and the 
need for energy conservation necessitate designing the 
IMs with increased levels of efficiency. Another important 
objective i.e temperature rise is mainly based on the 
insulation life . According to IEEE standard 101 , (T2) the 
expected life of winding insulation is doubled for every 10

C  reduction in operating temperature. Ventilation holes 

are provided in the rotor-yoke to prevent the temperature 
rise It is obvious that minimization of temperature rise 
will indirectly reduce the heat loss and improves the 
efficiency. The efficiency of the IM are typically considered 
in tailoring the objective function and optimized through 
appropriate combination of the design parameters. The 
optimal design of IM (ODIM) is so complicated that it is 
still a combination of art and science. There are many 
geometrical parameters and their relationships connected 
with motor specifications, which are in general nonlinear. 
(Mehmet Cunkas, 2010).  

Over the years, in addition to statistical methods 
(Han and Shapiro 1967) and the Monte Carlo technique 
(Anderson 1967), several mathematical programming 
techniques, which provides a means for finding the 
minimum or maximum of a function of several variables 
under a prescribed set of constraints, have been applied in 
solving the IM design problems. These techniques such as 
nonlinear programming, (Ramarathnamet al. 1971), 
Lagrangian relaxation method (Gyeorye Lee et al. 2013), 
direct and indirect search methods (Nagrialet al. 1979), 
Hooks and Jeeves method (Faizet al. 2001), 
Rosenbrock’smethod (Bharadwajet al. 1979-a), Powell’s 
method (Ramarathnamet al.  1973), finite element method 
(Parkinet al. 1993) and sequential unconstrained 
minimization technique (Bharadwajet al. 1979-b) are most 
cumbersome and time consuming. Besides a few of them 
requires derivatives and exhibits poor convergence 
properties due to approximations in the derivative 
calculations.  

Apart from the above methods, another class of 
numerical techniques called evolutionary search 
algorithms such as  simulated annealing (Bhuvaneswariet 
al. 2005;Kannanet al. 2010),  genetic algorithm (GA) 
(SatyajitSamaddaret al. 2013;Prakashet al. 2014-a),   
evolutionary algorithm (Jan PawelWieczoreket al. 1998),  
evolutionary strategy (Kim MK et al. 1998), particle 
swarm optimization (PSO) (Thanga Raj et al. 
2008;Sakthivelet al. 2011) and harmony search 
optimization (Prakashet al. 2014-b) have been widely 
applied in solving the IM design problems. Having in 
common processes of natural evolution, these algorithms 
share many similarities; each maintains a population of 
solutions that are evolved through random alterations and 
selection. The differences between these procedures lie in 
the techniques they utilize to encode candidates, the type 
of alterations they use to create new solutions, and the 
mechanism they employ for selecting the new parents. 
These algorithms have yielded satisfactory results across a 
great variety of engineering optimization problems.  

Recently an Ant Colony Optimization (ACO) that is 
inspired from the foraging behaviour of ants has been 
suggested for solving optimization problems (Dorigoet al. 
1996). In analyzing the behaviours of real ants, it was 
found that the ants are capable of finding the shortest path 
from the nest to the food source without using cues. The 
ACO does not require initial values for the decision 
variables and uses a stochastic random search that is 
based on the chemical pheromone trail so that the 
derivative information is unnecessary. The ACO has been 
applied to solve the travelling salesman problem (Dorigoet 
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al. 1997-a: 1997-b), the quadratic assignment problem 
(Gambardella et al. 2004) and the vehicle routing problem 
(Bell et al. 2004). 

The aim of this paper is to develop an ACO based 
method for optimally designing IMs with a view of 
effectively exploring the solution space and obtaining the 
global best solution. The developed methodology has been 
applied in designing two IMs and the performances have 
been studied. The paper is divided into five sections. 
Section 1 provides the introduction, section 2 overviews 
ACO, section 3 formulates the IM design problem and 
elucidates the proposed method (PM), section 4 discusses 
the results and section 5 concludes.  

 

2. ANT COLONY OPTIMIZATION 
ACO, inspired from the foraging behaviour of ants, 

is an optimization technique for solving multimodal 
optimization problems (Dorigoet al. 1990). Ants live in 
colonies and their behaviour is governed by the goal of 
colony survival rather than being focused on the survival 
of individuals. When searching for food, ants initially 
explore the area surrounding their nest in a random 
manner. While moving, ants leave a chemical pheromone 
trail on the ground. When choosing their way, they tend to 
choose, in probability, paths marked by strong pheromone 
concentrations. As soon as an ant finds a food source, it 
evaluates the quantity and the quality of the food and 
carries some of it back to the nest. During the return trip, 
the quantity of pheromone that an ant leaves on the 
ground may depend on the quantity and quality of the 
food. The pheromone trails will guide other ants to the 
food source. Also, they are capable of adapting to changes 
in the environment, for example, finding a new shortest 
path once the old one is no longer feasible due to a new 
obstacle.  

Each ant will build a full path, from the beginning 
to the end state, through the repetitive application of state 
transition rule. While constructing its tour, an ant also 
modifies the amount of pheromone on the visited path by 
applying the local updating rule. Once all ants have 
terminated their tour, the amount of pheromone on edge 
is modified again through the global updating rule. In 
other words, the pheromone-updating rules are designed 
so that they tend to give more pheromone to paths which 
should be visited by ants. In the following, the state 
transition rule, the local updating rule, and the global 
updating rule are briefly outlined. 

The state transition rule used by the ant system, 
called a random-proportional rule, is given by the 
following equation that gives the probability with which 
ant-k in node-i chooses to move to node- j. 
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Equation (1) indicates that the state transition 
rule favours transitions toward nodes connected by 
shorter edges and with greater amount of pheromone.  
While constructing its tour, each ant modifies the 
pheromone by the local updating rule. This can be written 
below: 
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The local updating rule is intended to shuffle the 
search process. Hence, the desirability of paths can be 
dynamically changed. The nodes visited earlier by a 
certain ant can be also explored later by other ants. The 
search space can be therefore extended. Furthermore, in 
so doing, ants will make a better use of pheromone 
information. Without local updating, all ants would search 
in a narrow neighbourhood of the best previous tour. 
When tours are completed, the global updating rule is 
applied to edges belonging to the best ant tour. This rule is 
intended to provide a greater amount of pheromone to 
shorter tours, which can be expressed below: 
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 This rule is intended to make the search more 
directed; therefore, the capability of finding the optimal 
solution can be enhanced through this rule in the problem 
solving process. The iterative procedure of updating the 
pheromone in tune with the cost of each ant’s tour is 
continued until the desired conditions are satisfied. The 
flow of the ACO is summarized below: 

 

1. Choose the ACO parameters such as ant colony size,

  ,  etc. 
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2. Randomly generate tour paths for all the ants in the 
colony to denote decision variables within the 
respective limits. 

3. Initialize the pheromone   

4. Evaluate the cost of each ant’s tour. 
5. Perform global update of the pheromone  using Eq. 

(3). 
6. Perform local update of the pheromone  using Eq. 

(2) based on the probability given by Eq. (1). 
7. Repeat steps 4-6 till the desired convergence criteria 

are met.   

 

3. PROPOSED METHOD 
The proposed ACO based solution method for 

ODIM involves formulation of the problem, representation 
of ants through the chosen design variables and 
construction of an augmented cost function,  .  

 

3.1 Problem formulation 
The ODIM problem involves large number of 

design variables. Many of these variables fortunately have 
a little influence either on the objective function or on the 
specified constraints.  However, to ease the curse of high 
dimensionality, the following seven variables are 
identified as primary design variables (Prakashet al. 2014-
b).   
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The ODIM problem is formulated by defining an 
objective function and a set of constraints.  The chosen 
problem comprises two objectives of maximizing the 
efficiency and minimising the temperature rise. While 
combining both into a single objective, both the terms 
must be transformed into either maximization or a 
minimization function. In this paper, both the objectives 
are transformed into minimization function and their 
relative significance controlled through a weight 
parameter w . 
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3.2 Representation of design variables 
The ant that comprises the tour path is represented to 
denote the chosen primary design variables, defined by 
Equation (9), in vector form as: 

 

   721721 ,,,,, xxxaaaAntPath                        
(15) 

 

3.3 Cost function 
The algorithm searches for optimal solution by minimizing 
an augmented cost function  , which is formulated from 
the objective function of  Equation (7) and the penalty 
terms representing the limit violation of the explicit 
constraints of Equation (8). The augmented cost function 
is written as 
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3.4 Solution process 
Each ant in the colony initially builds a feasible 

tour path that denotes a feasible solution. The augmented 
cost   is calculated by considering the decoded values of 
the tour path of each ant. The pheromone values are 
globally updated using Eq. (3) and then locally through Eq. 
(2) based on the probability of Eq. (1) with a view of 
minimizing the     till the number of iterations reaches a 
specified maximum number of iterations.  
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4. NUMERICAL RESULTS 

The proposed ACO based method is used to obtain 
the optimal design of two IMs. The first motor under study 
is rated for 7.5 kW, 400 V, 4 pole, 50 Hz and the second 
one for 30 kW, 400 V, 6 pole, 50 Hz. The usefulness of the 
PM is illustrated through comparing the performances 
with that of the GA based design approach. In this regard, 
the same set of primary design variables, cost function and 
design equations, involved in the PM, are used to develop 
the GA based design approach. The software packages are 
developed in Matlab platform and executed in a 2.67 GHz 
Intel core-i5 personal computer. There is no assurance 
that different executions of the developed design 
programs converge to the same design due to the 
stochastic nature of the GA and ACO and hence the 
algorithms are run 20 times for each IM and the best ones 
are presented.  

Initially the designs are obtained by optimizing 
the individual objectives of efficiency and temperature rise 
by setting the w values as 1 and 0 respectively, and 

presented in Table-1 for both the motors. It is clear from 
the Table that the PM is able to obtain better efficiency 
when 1w  and lower temperature rise when 0w than 

that of the GA approach. However, it is to be noted that the 
other performance value of efficiency for the case with 

0w and temperature rise for the case with 1w are 

inferior, as the respective function is omitted in the 
optimization process.  

 

Table-1.Comparison of performances by individual 
objectives. 

 

w  Motor Performance GA  PM 

1 

1 
Eff  86.708 86.727 

TR  46.121 45.728 

2 
Eff  90.497 90.582 

TR  34.137 33.449 

0 

1 
Eff  83.439 83.432 

TR  10.772 10.741 

2 
Eff  87.980 87.984 

TR  10.040 9.958 

 

Table-2.Comparison of results with multiple objectives for Motor-1. 

 

  GA PM 

Primary design 
variables 

x  

1x  1.88402 1.80945 

2x  0.37157 0.31248 

3x  12163.84 12442.16 

4x  0.31956 0.81214 

5x  3.43945 4.78128 

6x  4.95201 4.07190 

7x  1.18351 1.14620 

Constraints 

)(xg  

21 g  1.313 1.027 

22 g  0.886 0.749 

05.03 g  0.032 0.029 

5.14 g  9.044 11.808 

705 g  28.288 24.454 

5.06 g  0.289 0.493 

75.07 g  0.932 0.866 

Performances 
Eff  84.431 84.276 

TR  28.288 24.454 

 

The optimal designs with multiple objectives are 
presented in Tables 2 and 3 for motor 1 and 2 
respectively. The corresponding performances in terms of 
efficiency and temperature rise are also presented in the 

respective Tables of 2 and 3.  It can be observed from 
these Tables that GA and ACO offer a compromised 
solution that lies in between the respective best and worst 
objective function values obtained with individual 
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objectives. The quality of the compromised solutions 
cannot be estimated as it depends on the weight values 
assigned to the individual objectives and the range of the 
each objective function values. It is known that another 
compromised solution can be obtained by simply changing 
the weight parameter of each objective.  

Tables 2 and 3 also contain the values of the 
constraints of Eq. (8) along with their limits. It can also be 
observed from these tables that both the methods bring 
the constraints such as maximum flux density, slip at full 
load, starting to full load torque ratio, etc., of Eq. (8) to lie 
within the respective limit, as the constraints are added as 
penalty terms in the fitness function of Eq. (16).   

 

Table-3.Comparison of results with multiple objectives for Motor-2. 

 

  GA PM 

Primary design 
variables 

x  

1x  1.65033 1.85576 

2x  0.39569 0.39759 

3x  13326.72 13325.83 

4x  0.52086 0.53655 

5x  3.25569 3.46173 

6x  6.77276 6.86975 

7x  1.27144 1.27976 

Constraints 

)(xg  

21 g  1.200 1.142 

22 g  0.946 0.891 

05.03 g  0.025 0.026 

5.14 g  10.242 9.799 

705 g  29.601 27.809 

5.06 g  0.354 0.340 

75.07 g  0.902 0.906 

Performances 
Eff  87.773 87.774 

TR  29.601 27.809 

 

5. CONCLUSIONS 

Indeed the ACO is a powerful population based 
stochastic algorithm for solving multimodal optimization 
problems. A new methodology involving ACO for solving 
ODIM problem has been suggested. It determines the 
optimal values for primary design variables that 
maximises the efficiency and reduces the temperature 
rise. The results on two IMs clearly demonstrate the ability 
of the PM to produce the universal best design parameters 
that maximises the efficiency and reduces the temperature 
rise of the IM. It has been demonstrated that the new 
approach fosters the continued use of ACO and will go a 
long way in serving as a useful tool in design problems. 
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NOMENCLATURE 

)(xf  objective function to be optimized 

GA genetic algorithm 

)(xg  a set of inequality constraints 

IM induction motor 

cooltA  total cooling area in 
2m  

L Stator core length in  m 

  Peripheral speed m/s 

D Stator core diameter in m  

ACO ant colony optimization 

Eff     efficiency 

maxIter  maximum number of iterations for convergence 

check 
k
iJ

 
the set of nodes that remain to be visited by ant-k 

positioned on node-i 
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kW  rating of IM 

cusP        stator copper losses in W  

 

kL
 

the length of the tour between edges  i and  j.  

stP   total stator loss in W  

itP   iron loss in tooth in W  

icP      iron loss in core in W    

 

min"" and max"" minimum and maximum limits of the   

respective variables 

nd  number of decision variables 

ODIM optimal design of IM 

PM proposed method 

tP  total losses 

nlP  no load loss 

cusP  stator copper loss. 

curP  rotor copper loss. 

k
jiP

 
probability with which ant-k  in node-i  chooses to 

move to node- j 

Q
 

an adjustable parameter  

w  weight values to represent relative significance 

between objectives 

X  vector of primary design variables 

  a set of limit violated constraints 

  weight constant of the penalty terms 

ij  the pheromone that is deposited on the edge 

between nodes i and j 
  the inverse of the edge distance,  


 

and  adjustable parameters that determines the 

relative importance of pheromone trail and 
heuristic desirability 

  a heuristically defined parameter. 

  pheromone decay parameter in the range of  (0,1).  

  augmented objective function 
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