
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | Jul -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3255

Dockerization (Replacement of VMs)

Lakshay Swani1, Prakita Tyagi2

1 Software Engineer, Globallogic Pvt. Ltd, Sector-144, Noida, UP, INDIA
2 Software Engineer, Infosys, Bengaluru, INDIA

---***---

Abstract – With the present trend in the IT industry, the
computational work is becoming more and more complex and
integral to various scientific and mathematical researches,
there arises a need for reproducibility of extensive
computational systems. Though it seems possibly easy to
replicate the computational systems as is done with physical
systems, but the rapid change and evolvement the software
industry go through, replicating the computational systems is
a serious challenge. Through this paper, we provide a
scenarios where the physical replication becomes unviable and
a need for computational replication comes up. The standard
approaches to the problems raised in the above scenarios fail
to provide solution and thus to tackle those issues, we explore
the option of an emerging technology, Docker, that provides us
with computational replication by taking in consideration
through the aspects of versioning, virtualization, portability
and modularity.

Key Words: Computational Replication, Containers,
Docker, Docker Hub, Ubuntu

1. INTRODUCTION

Computation is the base of all the mathematical and
scientific researches [5]. At each step of research, from the
collection of data to analysis, conceptualization and
visualization, computational work is involved [24]. Thus the
need for replication of computation has been a top priority
to all the researchers [17, 18]. As the complexity involved in
analysis & processing of data increased in the past few years,
the computational replication has gained attention [17].
Reproducible research has received an increasing level of
attention throughout the scientific community [18, 21] and
the public at large [24].

1.1 The Problem

It is worth observing from the outset that the primary
barrier to computational reproducibility in many domain
sciences has nothing to do with the technological approaches
discussed here, but stems rather from a reluctance to publish
the code used in generating the results in the first place [2].
To process the ever increasing demand of computation,
multiple processors with extensive hardware is required
with proper support to handle the changes. Multiple
processor came into play, Virtual Machines took the load for
providing extensive computational capabilities, high-end

computers were designed which when interconnected
within a network could perform the computational task
effectively. As easy it seemed, the more difficult was the task
to achieve the viable computational capabilities [6]. The
demands were ever increasing for higher computational
replication which was to be fulfilled through the above
discussed technologies. But the problem that was faced was
to how much extensibility is to be provided [23]. The
physical replication or the replication through virtual
machines was limited to an extent beyond which, being able
to manage those hardware equipment wouldn’t be viable for
any researcher. With the increased hardware equipment, the
increased resource utilization such as RAM, Hard Disks and
others were to increase significantly. Also with the changing
trend of the technologies, being able to manage the vast
number of equipment or VMs and to update them as per the
requirement was hectic and proved to be time consuming
and complex. Thus to eradicate all these issues, Docker came
into play.

The problems that were being tackled can be categorized
into 4 technical challenges- Dependency Issues, Software
dynamicity, Limited Documentation & Barriers to adoption
[3, 7, 9, 15 and 26].

Dependency Issues

To account for the computational replication, multiple
solutions have been provided. But for a particular code to be
run over the provided solution to provide the computational
replication, various dependencies of the code being run
needs to be resolved [13]. The dependencies involve
installation and configuration of various tools required to
execute the piece of code. Taking the case of VMs to solve the
issue of computational complexity, multiple VMs running the
particular piece of code needs to be refreshed and installed
with the required tools and software which therein needs to
be configured as per the requirements [11]. This issue
occurring due to the overhead involved in deploying and
configuring the dependencies [3], a well-structured solution
to computational replication was required [4].

Software Dynamicity

The code being deployed is non-static, i.e. it is updated
frequently. The updating could be possibly due to inclusion
of new features or solving of the previously occurring bugs.
To be able to solve this issue through the traditional

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | Jul -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3256

approach of VMs, each VM will have to be updated and
reconfigured to support the new code so that the newly
written code becomes compatible with the configured VM
[16]. This generally is an overhead and required careful
examination and work-force to implement any change of
code that too frequently [19].

Limited Documentation

With changing workforce within the organization, deploying
the pre-requisites and configuration of VMs through the
provided documentation could be limited [15]. For a novice,
it becomes a barrier understanding the documentation [7].
Also there is a barrier in understanding and executing the
documentation provided for executing the piece of code.
Since the deployment and configuration is a critical part, any
complications during this stage could prove to be harmful for
the organization [9]. Thus limited documentation is also one
of the challenges being faced.

Barriers to adoption

The trivial solutions provided for computational replication
such as Virtual Machines, integration services and others
involve learning and becoming apt to the technology is one
of the main concern. The researchers face the barrier to
learn and understand the tools and approaches that will
further work towards achieving computational replication
[14].

1.2 The Solution

Docker is a new, yet an excellent piece of technology that can
facilitate the computational replicability and has been
identified by many [8]. A hypervisor is a software, hardware
or firmware over the top of which, the VMs run. The
hypervisors are themselves ran on physical machines, which
are referred to as the “host machines”. The host machine is
responsible for providing the VMs with hardware resources
such as RAM and CPU [22]. These resources provided to the
host machine are then divided between VMs running over
the host machine and can be distributed as it see fit [27]. So
if one of the VM executing on the host machine is running a
heavy application, the host machine allocates more
resources to that particular VM than the other VMs running
on that host machine [11]. Docker is similar to a hypervisor
in the terms that it supports building of containers on the top
of the operating system Docker is running over. Docker,
based on Linux Containers, is an open-source project. It uses
Linux Kernel features like namespaces and control groups to
create containers on top of an operating system. Docker
brings to the table a whole new set of capabilities that the
other technologies couldn’t bring. They include Ease of Use,
speed, Docker Hub, Modularity and Scalability.

DOCKER

Docker is an open source project that builds on many long
familiar technologies from operating systems research: LXC
containers, virtualization of the OS, and a hash-based or Git-
like versioning and differencing system, among others.
Docker automates the repetitive tasks of setting up and
configuring development environments so that developers
can focus on what matters: building great software. When an
app is dockerized, that complexity is pushed into containers
that are easily built, shared and run. Onboarding a co-worker
to a new codebase no longer means hours spent installing
software and explaining setup procedures. Code that ships
with Docker files is simpler to work on: Dependencies are
pulled as neatly packaged Docker images and anyone with
Docker and an editor installed can build and debug the app in
minutes.

Docker is capable of overcoming the technical problems that
the earlier technical solutions provided to computational
replication.

Docker is capable of handing the dependency issue very well.
Instead of installation and configuration of required tools
over the containers is done manually, the installations and
configurations need to be done once and then the Docker has
the capabilities to create a binary file that contains the
requirements and configuration over which the code needs
to be run.

This binary file is referred to as “Docker Images”. The key
difference between the Docker images to the other Virtual
Machine images is that the Docker image provides along
with itself, the Linux kernel instead of the complete virtual
machine host. This enables the system to run the running
instance of Docker container with ease and perfection. Since
the kernel being present instead of the whole VM, one can on
a typical computer can run over a 100 Docker container
instances.

As discussed earlier, the code gets refreshed and updated
frequently which could be due to any bug fix or annual
maintenance or new feature that needs to add to the code.
The challenge raised through this can be significantly
reduced through the use of Docker has Docker images
defines the environment to a particular operating system.

The Docker has the ease of use capabilities through which
the images that need to be created and lets the user create
the Docker image easily and interactively.

2. INSTALLATION & DEPLOYMENT

Docker is portable and has the ability to run over various OS
present out there. Now we will go through a step by step
procedure for installation and configuration of Docker onto a
commonly used OS – Ubuntu. Before we proceed, we should

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | Jul -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3257

be aware of the common terminology being used in Docker. It
involves a bit of knowledge around Docker Images, Docker
Container & Docker Registry.

Docker Images

A Docker image is basically a template that is used over
Docker containers. This image includes data and
configuration of the various tools that are installed over the
OS required and also contains the OS. This image is used to
run the container. Docker has provided us with pre-built
images of various OS and basic software that have been
installed on to them. These images are ready to deploy
images which are deployed over the container in Docker.

Docker Container

Docker Container is itself a type of image that can be read and
written to that runs on top of the Docker image available to
the Docker. So as to provide the functionality of versioning,
Docker uses the union-file system as a backend for the
Docker Container. This allows the Docker to save any changes
made to the container as a new layer above the original image
hence maintaining the versioning of the Docker images and
container. The container is the referred layer over which
different applications are installed and each Docker container
is run independent of each other such as a VM, thus providing
a secure application platform.

Docker Registry

The Docker registry is basically a repository for Docker
images. Docker provides us with private and public
repositories. The public repository is referred to as Docker
Hub where the Docker images can be pushed and pulled and
Docker provides us with a mechanism to automate the
building and deployment process of these Docker images.

2.1 Installation of Docker

To be able to install the Docker software on Ubuntu, we need
to run the commands as a root user, hence we need to run the
following command on the Ubuntu System.

sudo -s

Check the version of the currently running Kernel version.

uname -a

The image shows the presence of x86_64 bit OS being run.
Check the version of the Ubuntu installed over the system.
cat /etc/lsb-release

The image depicts the version of Ubuntu on which the Docker
is going to be installed.

Fetch the latest updates of Ubuntu before installing Docker
on the system.
apt-get update
apt-get upgrade
Install Docker with the following apt command.
apt-get install -y docker.io
Once the installation is completed, proceed with staring the
docker using the systemct1 command
systemctl start docker
To enable the Docker to be run each time the system boot,
run the following command
systemctl enable docker
To check the version of Docker installed on the system, run
the following command:
docker version

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | Jul -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3258

The image shows that Docker is now installed on the Ubuntu
System. The next step involves creation of container using
either of the pre-built Docker images provided by Docker in
the Docker public registry i.e. the Docker hub.

2.2 Deployment

Docker provides in the Docker hub, pre-built Docker images
of various OS. We can pull the Docker image from the Docker
hub and have it installed on the Docker.
To search for a base image for an OS from the Docker hub,
run the following command:
docker search Ubuntu

The above command will provide us with all the Ubuntu
images present on the Docker Hub.
The next step includes downloading the Docker image from
the Docker Hub to your Ubuntu system.

docker pull Ubuntu

This command will download the image file from the server
to your Docker registry/Docker Hub.

We can see all the downloaded Docker images on our Docker
registry through the following command:
docker images

In the next step, we have to create a container to run an
instance of Docker image that has been downloaded to the
Docker registry.
docker create ubuntu:16.04

Once the Docker container has been created, it is time to run
the instance that has been created. To run the Docker
container created, execute the command:
docker run –I –t ubuntu:16.04 /bin/bash

The above command will run the container created and will
automatically redirect us directly into the container that is
created and run the command bin/bash/ inside the container.
To view all the containers running in the background, we can
execute the following command:
docker ps
To stop a running container, we need to execute the stop
command
docker stop Name/ContainerId
To remove a created container from the Docker, execute the
rm command
docker rm Name/ContainerId

3. FEATURES

In response to the requirement of computational replicability,
Docker provides a full-fledged solution to all the problems
that arose in the trivial solutions and provides us with
extensive features that are required throughout the desired
computational replication. We highlight few of the features
below.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | Jul -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3259

Development over Local Environment

This is one of the most important feature that is provided by
Docker. The trivial solutions to computational reproducibility
did not provide the space to learn and fit in a locally available
system and be integrated seamlessly into the existing
workflow patterns. Docker, being a new and unfamiliar tool is
immune from the above specified problem as it can
seamlessly integrate into the existing workflow and can be
learn and developed locally providing the researchers with a
tool that can be easily adopted.

Effective Configuration

This is a key feature of Docker that provides us with effective
configuration of the system easy and quick. Our code can be
deployed in lesser time requiring low effort. Since Docker can
be used in a wide variety of environments, the infrastructure
requirements are no longer managed and linked with the
environment the application is being run on [20].

Enhanced productivity

Through ease in the technical configuration and rapid
deployment of application on the Docker, there is no doubt in
the increased productivity of the code that is being deployed.
Docker not only provides us with functionality to execute the
application in an isolated environment, but also it has
reduced the resources required for the deployment of the
code.

Application Isolation

Docker provides us with containers that are used to run
applications in isolated environments. Each of the container
is independent to one another and allows us to execute any
kind of application over a number of isolated containers with
different configuration parameters.

Services

Services provide us a list of tasks that lets us specify the state
of container inside the cluster. Each of the task represents
one instance of a container that should be running and
Swarm schedules them across nodes.

Swarm

It is a scheduling and clustering tool for Docker containers.
Swarm uses the Docker API as its front end, which provides
us with a way to use various tools to control it. It also helps in
controlling a cluster of Docker hosts as a single virtual host. It
is a self-organized group of engines used to enable pluggable
backend.

4. CONCLUSIONS

Docker is an open source container virtualization platform
which helps developers to deploy their applications and
system administrators to manage applications in a safe
virtual container environment. Docker runs on the Intel /
AMD 64-bit architecture and the kernel should be higher
3.10 version. With Docker, you can build and run your
application inside a container and then move your
containers to other machines running Docker without any
worries.

REFERENCES

[1]Altintas, I. et al. 2004. Kepler: an extensible system for
design and execution of scientific workflows. Proceedings.
16th international conference on scientific and statistical
database management, 2004. (2004).

[2]Barnes, N. 2010. Publish your computer code: it is good
enough. Nature. 467, 7317 (Oct. 2010), 753–753.

[3]Collberg, C. et al. 2014. Measuring Reproducibility in
Computer Systems Research.

[4]Dudley, J.T. and Butte, A.J. 2010. In silicon research in the
era of cloud computing. Nat Biotechnol. 28, 11 (Nov.
2010), 1181–1185.

[5]Eide, E. 2010. Toward Replayable Research in Networking
and Systems. Archive ’10, the nSF workshop on archiving
experiments to raise scientific standards (2010).

[6]FitzJohn, R. et al. 2014. Reproducible research is still a
challenge.
http://ropensci.org/blog/2014/06/09/reproducibility/.

[7]Garijo, D. et al. 2013. Quantifying reproducibility in
computational biology: The case of the tuberculosis
drugome. {PLoS} {ONE}. 8, 11 (Nov. 2013), e80278.

[8]Gil, Y. et al. 2007. Examining the challenges of scientific
workflows. Computer. 40, 12 (2007), 24–32.

[9]Gilbert, K.J. et al. 2012. Recommendations for utilizing and
reporting population genetic analyses: the reproducibility of
genetic clustering using the program structure. Mol Ecol. 21,
20 (Sep. 2012), 4925–4930.

[10]Harji, A.S. et al. 2013. Our Troubles with Linux Kernel
Upgrades and Why You Should Care. ACM SIGOPS
Operating Systems Review. 47, 2 (2013), 66–72.

[11]Howe, B. 2012. Virtual appliances, cloud computing, and
reproducible research. Computing in Science & Engineering.
14, 4 (Jul. 2012), 36–41.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | Jul -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3260

[12]Hull, D. et al. 2006. Taverna: a tool for building and
running workflows of services. Nucleic Acids Research. 34,
Web Server (Jul. 2006), W729–W732.

[13]Ince, D.C. et al. 2012. The case for open computer
programs. Nature. 482, 7386 (Feb. 2012), 485–488.

[14]Joppa, L.N. et al. 2013. Troubling Trends in Scientific
Software Use. Science (New York, N.Y.). 340, 6134 (May
2013), 814–815.

[15]Lapp, Hilmar 2014. Reproducibility / repeatability
bigThink (with tweets) @hlapp. Storify.
http://storify.com/hlapp/reproducibility-repeatability-
bigthink.

[16]Leisch, F. 2002. Sweave: Dynamic Generation of
Statistical
Reports Using Literate Data Analysis. Compstat. W. Härdle
and B. Rönz, eds. Physica-Verlag HD.

[17]Merali, Z. 2010. Computational science: ...Error. Nature.
467, 7317 (Oct. 2010), 775–777.

[18]Nature Editors 2012. Must try harder. Nature. 483,
7391 (Mar. 2012), 509–509.

[19]Ooms, J. 2013. Possible directions for improving
dependency versioning in r. arXiv.org.
http://arxiv.org/abs/1303.2140v2.

[20]Ooms, J. 2014. The openCPU system: Towards a
universal interface for scientific computing through
separation of concerns. arXiv.org.
http://arxiv.org/abs/1406.4806.

[21]Peng, R.D. 2011. Reproducible research in computational
science. Science. 334, 6060 (Dec. 2011), 1226–1227.

[22]Stodden, V. 2010. The scientific method in practice:
Reproducibility in the computational sciences. SSRN Journal.
(2010).

[23]Stodden, V. et al. 2013. Setting the Default to
Reproducible. (2013), 1–19.

[24]The Economist 2013. How science goes wrong. The
Economist.
http://www.economist.com/news/leaders/21588069-
scientific-research-has-changed-world-now-it-need-change-
itself-how-science-

[25]Xie, Y. 2013. Dynamic documents with R and knitr.
Chapman; Hall/CRC.

[26]2014. Examining reproducibility in computer science.
http://cs.brown.edu/~sk/Memos/ExaminingReproducibilit
y/.

[27]2012. Mick Watson on Twitter: @ewanbirney
@pathogenomenick @ctitusbrown you can’t install an image
for every pipeline you want...
https://twitter.com/BioMickWatson/status/265037994526
928896.

