
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | July-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3107

Effective Information Flow Control as a Service: EIFCAAS

SUNIL A

 PG Student, Department Of Computer Science and Engineering, Acharya Institute of Technology, Karnataka, India
---***---
Abstract – In an environment of cloud ecosystem, web
services have becoming critical aspects as the use of web
technologies and software oriented architecture (SOA) are
expanded. In order to process and keep acuteness of data,
most of the SaaS applications will have the multiple accesses
to the data. Even having the maximum benefits from these
technologies, they put SaaS applications to the risk of
attacks. This may leads to the loss of control and security
enforcement over confidential data. In order to fulfill these
disadvantages, an effective solution is needed. By taking the
reference of security as a service(SecaaS) model, this paper
introduces “An Effective Information Flow Control as a
Service (EIFCaaS)”. EIFCaaS lays a foundation of cloud-
delivered IFC-based security analysis and monitoring
services. This paper presenting the framework with EIFCaaS
to detect the vulnerabilities in the information flow in SaaS
applications. To achieve data integrity and confidentiality,
this framework is the viable solution.

Key Words: Vulnerability Detection, SecaaS, SOA.

1. INTRODUCTION

Cloud computing is a web based application that provides
shared computer resources and different services on
request. It is a model, which provides a pool of processing
resources such as servers, applications and
administrations which can be quickly divided and
distributed with less effort from management. Cloud
computing supports the user to store and process their
data in many ways such as privately owning or storing in
third party datacenters to access their data from far
distance or from anywhere in the world. The resources
provided by cloud computing are shared among multiple
users their by reducing the cost and improving the
economic growth. Cloud computing aims to allow the user
to utilize all the technologies provided even without
having much knowledge about them.

In a recent development, it has been observed that some
attacks of applications are targeting the particular type of
cloud environment. While developing the SaaS
applications, some technologies used in the application
development allows the novel attack to the services as
existing ones. Thereafter, the research of number of
applications running on different cloud (privatecloud,
public, hybridcloud) has recorded that, 96% of the
applications that are tested with more than one
vulnerability. With this aspect, injection of NoSQL,

injection of SQL(SQLI) and information ejaculation, they
consist of weak security of 55% as recorded, since the
exposed security of data towards threats of serious type
due to intents of malicious and neglected vulnerabilities.
These vulnerabilities can be caused by improper
validation of input. The security towards the application
can be provided by the various service providers, third
parties and other public repositories. The information
hacked by the unauthorized user may cause the loss of
integrity and confidentiality of the data.

Author[1] examine about the security vulnerabilities that
can emerge when programming designers make
applications or modules for use with JavaScript-based
server applications, for example, NoSQL database motors
or Node.js web servers. In the worst case situation, an
aggressor can misuse these vulnerabilities to transfer and
execute discretionary paired records on the server
machine, viably allowing him full control over the server.
JavaScript has been broadly utilized on web application
customer side levels (i.e. in code executing in the userʼs
program) for a considerable length of time with a specific
end goal to give a wealthier, more "desktoplike" client
encounter.

In any case, as of late, there has been a surge of
enthusiasm for JavaScript not only for customer side code,
but rather for server-side code also. There are currently
server-side JavaScript (or SSJS) includes in database
servers (CouchDB for instance), document servers (Opera
Unite), and web servers (Node.js). Absolutely quite a bit of
this new intrigue can be ascribed to the huge execution
changes that JavaScript motor designers have made as of
late. Rivalry between Microsoft, Mozilla, Apple, Google,
and Opera to assemble the speediest program has brought
about JavaScript motors that run requests of extent
quicker than their forerunners of only a couple discharges
past. While it might not have been possible from an
execution point of view to manufacture a completely
working web server in light of JScript around.

By the use of speed, volume and assortment of big data it
is possible to amplify the security and protection issues
such as expanded cloud scale foundation, information
sources and arrangement differences, discharging nature
of information collection and cloud relocation with high
volume. Accordingly, conventional security components,
which are custom fitted to securing little scale, static
(instead of spilling) information, are deficient. Here the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | July-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3108

creator [2] highlights the main ten security and challenges
of big data. Highlighting the difficulties will persuade
expanded concentrate on bracing Big Data frameworks.
Whether a program can able to release mystery
information to open ports, or whether basic calculations
can be impacted from outside are checked by
information flow control (IFC). In any case, numerous IFC
investigations are uncertain, as they are stream obtuse,
setting harsh, or protest heartless; bringing about false
cautions. Creator Christian Hammer and Gregor Snelting
[3] say that IFC should better adventure current program
examination innovation and present an approach in light
of program reliance diagrams (PDG). PDGs have been
created throughout the most recent 20 years as a
standard gadget to speak to data stream in a program
and deal with practical projects.

Specifically, the reliance chart generator for full Java
bytecode is utilized as the reason for an IFC usage which
is more exact and needs fewer comments than
conventional methodologies. The PDGs for successive
and multi-strung projects and disclose accuracy
increases because of stream, setting, and protest
affectability. The creators then enlarge PDGs with a cross
section of security levels and present the stream
conditions for IFC. At that point they portray calculations
for stream calculation in detail and demonstrate their
accuracy. At that point they stretch out stream conditions
to deal with declassification and demonstrate that the
calculation regards monotonicity of discharge. At last,
illustrations exhibit that the execution can check sensible
consecutive projects in full Java bytecode.

Author [4] explores the component for secure data stream
in a PC framework. These components are inspected
inside a scientific structure reasonable for defining the
prerequisites of secure data stream among security
collections. The focal part of the model is a grid structure
gotten from the collection of security and defended by the
semantics of data stream. The grid attribute allows
succinct details of the security prerequisites of various
existing frameworks and encourage the development of
instruments that uphold security. The model gives a
bringing together perspective of all frameworks that
confine data stream, empowers a characterization of them
as indicated by security destinations and recommends
some new methodologies. It additionally prompts the
development of programmed program accreditation
instruments for checking the safe stream of data through a
program.

In general cloud computing can be understood as
computation and distribution of data over the internet.
Using this technology web sites are increased in steep
from past many years. Those websites are infected from
cross site scripting and injection of failed applications. To
detect the vulnerabilities there is an alternative strategy

called taint analysis. Most of the present taint analysis
approaches does not deal with continuous storage (e.g.
object datastores), dull objects (no access to the
implementation of objects) or huge range of policies of
security. These aspects are considered by the author [5] in
the cloud computing application taint analysis. Google app
engine (GAE) is a cloud computing platform for which,
taint analysis is provided via python library, instead of
modifying compiler or interpreter.

Figure 1: The operational overview of EIFCaaS
groundwork.

The developing system aims at the targeted requirements.
The major service offered by EIFCaaS method is
represented in this framework(Figure 1). Without
installing any software requirements or hardware setup or
any special training, the services developed on SaaS
application are provided on the basis of subscription
through internet.

In order to analyse the code of application provider before
posting them on the cloud provider’s platform or
infrastructure, service of this type is managed by the third
trusted entity. Through online dashboard which is
convenient to the service distributor, the analysis results
are provided. The first step in the groundwork is that, in
which, the software service provider shows his interest in
building or hosting his SaaS applications build upon
infrastructure or platform of cloud provider as shown in
figure 4. In order to deploy and launch such applications,
the service provider is asked by the cloud provider to have
the certificate of security from the third party is the
second step. The provider of software service then
subscribe with the third party which facilitates EIFCaaS is
the third step. It submits request to analyse the code to the
third trusted entity with application’s bytecode and the
web services associated with it.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | July-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3109

The software service distributor is provided the option to
select the kind of checking (confidentiality, integrate or
both) he want. Then the request is accepted by the trusted
party. It expands the groundwork to analyse the code
statistically to detect potential vulnerabilities. And finally,
on the dashboard, the detailed analysis results are
published and reported to the software service provides,
which is the fourth step. Analysed application is then
granted with the security certificate based on the results
and copy of it is sent to the cloud provider.

2. FRAMEWORK

There are four main components in EIFCaaS framework:
generator of model, engine of IFC, detector of vulnerability
and publisher of result. The responsibility of generator of
model is to build the life cycle of candidate application
simulation and the runtime execution. The engine of IFC is
responsible for analysing flow of information on the
bytecode of an application which is unmodified in
reference to the generated model. The detector of
vulnerability is responsible for detecting the insecure flow
paths which violates confidentiality and data integrity.
Then the publisher of result is responsible for refining and
reporting analysis output to the application provider. The
certificate of security is granted to the candidate
application based on the analysis result that has been sent
to both service providers and cloud providers.

3. IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

In order to validate the Effectiveness of EIFCaaS, a
prototype implementation is developed. The bytecode and
metadata applications are accepted by the prototype
which is implemented in java. The framework targets to
demonstrate the correctness of prototype for vulnerability
detection in SaaS applications of cloud. The generator of
model, detector of vulnerability and publisher of result
components are implemented in JAVA. The main activities
of the groundwork are disclosed as relaxed applications.

Using spring1 framework and JSP a simple interface is
developed with web base. In order to enable solutions to
deploy on Amazon NetBeans plugin is used. Point to point
analysis and call graph construction are performed by
extending the Java libraries. For the development of IFC
based on SDG and slicing techniques SOAP is used. SOAP is
used to run all C#, Java and spring web based services.
Stub and skeleton are used for interconnecting client and
server for data transfer between systems. Point-to point
analysis is offered by different groundworks. XML has
been used to put application under testing and evaluation.
While constructing the SDG, XML is selected since it takes
object sensitive features for consideration. To analyse the
code written in dynamic and object oriented language like
Java this feature is essential. On six progressive open

source applications EIFCaaS has been applied, which are
available on GitHub2 and IBM Bluemix3.

Using Java and spring framework the applications are
implemented and are ready to be deployed in IBM
Bluemix5, which is a PaaS application. Table 1 describes
the application in terms of lines of code, files, packages,
methods, and external libraries. The specification of set of
source and sinks of NoSQL are identified by relevant
Jersey and spring framework APIs. Creating and retrieving
the prepared query statements is the responsibility of
java.sql.Connection interface defined method
createStatement. Whether there exists the information
flow from sources to sink or not is examined by EIFCaaS.
Intensive object sensitive program analysis is performed
by configuring XML. A second and third column in the
table shows the number of sources and sinks in each
tested application respectively. After filtering the
candidate paths by EIFCaaS, the detected vulnerabilities
are reported, that are represented in the fourth table.
Number of analysed classes is shown in the fifth column.
There is a special application called CloudTrader. There is
a violation by vulnerability detection component from
untrusted sources to sensitive operations of database.
Elimination of these violations done by result publisher
component later. On the way of the violations that are
detected, the investigation confirms the methods that
operate SQL prepared statements. Inside the application
code, mixing of untrusted data with query operation are
prevented by prepared query statements, since they
assumed as defend data method. The level of security of
unbelieved data is translated to believe data in this aspect.
Performing a sensitive operation by the use of believed
data is not assumed as a defend as per the non-inference
rule. All detected violations are manually validated. NoSQL
and SQL injection vulnerabilities are represented by these
detected violations. The improper validation of input
parameters is the cause of these detected violation passed
to the services performing sensitive operations on the
backend data stores. In the analysed benchmark
applications it do not find any information leakage
vulnerabilities.

Name of
the
applicatio
n

No.
of
Java
Loc

No.
of
File
s

No. of
package
s

No. of
Method
s

No. of
External
Librarie
s

Restful-
blog

894 98 8 99 23

Restful-
customer

298 56 7 68 44

Spring-
music

844 97 14 65 56

Spring-
social

299 44 4 33 43

Cloud- 693 423 3 654 7

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 07 | July-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3110

Trader 7
Spring-
visitor

298 487 5 877 33

Name of
the
application

No. of
Sources

No. of
Sinks

No. of
vulnerabilities

No. of
Classes

Restful-
blog

9 15 11 765

Restful-
customer

3 3 1 123

Spring-
music

1 3 1 453

Spring-
social

0 1 0 938

Cloud-
Trader

19 22 0 1122

Spring-
visitor

1 9 6 1233

Table 2: EIFCaaS detection of vulnerabilities

4. CONCLUSION

From the new vectors of attacks as well as from the
existing ones, the SaaS applications of cloud are affected.
The security of information is manipulated by some
covertness kind of weak entities such as injection of
NoSQL, SQLI and leakage of information. By the inspiration
of SecaaS (security as a service) model, this project
presents Effective Information Flow Control as a Service
(EIFCaaS) to characterise the analysis of security of IFC-
based cloud and controlling services.

The project presents a framework static data stream
investigation structure for weakness discovery of SaaS
applications for instance for EIFCaaS's reception. This
structure helps in noting basic inquiries.
To check the end to end confidentiality and integrity in
SaaS application information flow including its
components; or possibility of trusting the application
security that are managed and hosted by the third parties
which are separate from the physical control of
consumers. This framework is proposed as services that
are offered by the third trusted parties. Without
introducing modifications in any application code or
underlying platform or VMM, the framework is deployed
and adapted. In order to model the environment of an
application, the framework applies several strategies.

The model embraced by the structure helps in thinking
about runtime data that permits the utilization of any
static investigation procedure. The system use IFC in light
of SDG and program cutting procedures which help its
capacity to distinguish comprehensively shaky data

stream including unequivocal and certain ways. This
venture approved the adequacy of the executed system
with the help of groundwork involving six genuine
applications. The assessment result shows that the
structure uncovers data stream vulnerabilities with high
accuracy.

REFERENCES

[1] CENZIC. (2014). Cloud Applications Vulnerability
TrendsReports[Online].Available:http://www.cenzic.com/
downloads/Cenzic_Vulnerability_Report_2014.pdf
[Accessed: February 2015]
[2] B. Sullivan. (2011, July). Server-side JavaScript
injection[Online].Available:https://media.blackhat.com/b
h-us 11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
[Accessed: April 2015]
[3] Cloud Security Alliance, “The Notorious Nine Cloud
Computing Top Threats in 2013,” 2013.
[4] Cloud Security Alliance, “Expanded Top Ten Big Data
Security and Privacy Challenges,” 2013.
[5] C. Hammer and G. Snelting, “Flow-sensitive,
contextsensitive, and object-sensitive information flow
control based on program dependence graphs,” Int. Journal
of Inform. Security, vol. 8, no. 6, pp. 399-422, 2009.
[6] D. E. Denning, “A lattice model of secure information
flow,” CACM, vol. 19, no. 5, pp. 236–243, 1976.
[7] S. Fink and J. Dolby. WALA–The T.J. Watson Libraries for
Analysis. Available: http://wala.sourceforge.net/.
 [8] J. Graf, M. Hecker, and M. Mohr, “Using JOANA for
Information Flow Control in Java Programs-A Practical
Guide,” Softw. Eng. Workshops, pp. 123-138. 2013.
[9] V. Pappas, V. Kemerlis, A. Zavou, M. Polychronakis, and
A. Keromytis, “CloudFence: Data Flow Tracking as a Cloud
Service,” Lecture Notes in Computer Science: RAID,
Springer, vol.. 8145, pp 411-431, 2013.
[10] L. Bello, and A. Russo, “Towards a taint mode for cloud
computing web applications,” Proc. 7th Workshop on
Programming Languages and Anal. for Security, ACM, 2012.
[11] M. Migliavacca, I. Papagiannis, et al., “DEFCON:
highperformance event processing with information
security,” Proc. USENIX Annual Tech. Conf., 2010.
 [12] Y. Mundada, A. Ramachandran, and N. Feamster,
“SilverLine: Data and network isolation for cloud services,”
Proc. of HotCloud, 2011.

Table1: The summary of available applications

http://wala.sourceforge.net/

