International Research Journal of Engineering and Technology (IRJET)e-ISVolume: 04 Issue: 07 | July -2017www.irjet.netp-IS

FORMATION OF TRIPLES CONSIST SOME SPECIAL NUMBERS WITH INTERESTING PROPERTY

V. Pandichelvi¹, P. Sivakamasundari²

¹Assistant Professor, Department of Mathematics, UDC, Trichy. ²Guest Lecturer, Department of Mathematics, BDUCC,Lalgudi, Trichy.

Abstract- In this communication, we discover the triple (a, b, c) involving some figurate numbers such that the sum of any two of them is a perfect square. Also, we find some interesting relations among the triples.

Key words: Diophantine m -tuples, polygonal numbers.

INTRODUCTION: Let *n* be an integer. A set of positive integers $\{a_1, a_2, a_3, ..., a_m\}$ is said to have the the property D(n) if $a_i a_j + n$ is a perfect square for all $1 \le i < j \le m$ such a sets is called a Diophantine m-tuple. such sets were studied by Diophantus [1]. The set of numbers $\{1,2,7\}$ is Diophantine triple with property D(2). For an extensive review of various articles one may refer [2-12]. In this communication, we find the triple (a,b,c) involving centered pentagonal numbers, decagonal numbers, Gnomonic numbers, Kynea numbers and Jacobsthal-lucas numbers such that the sum of any two of them is a perfect square. Also, a few interesting relations among the triples are presented.

Notations:

Let $CP_n = \frac{5n^2 + 5n + 2}{2}$ be a centered pentagonal number of rank *n*.

 $t_{10,n} = 4n^2 - 3n$ be a decagonal number of rank n. $Gno_n = (2n-1)$ be a Gnomonic number of rank n. $K_n = 2^{2n} + 2^{n+1} - 1$ be a Kynea number of rank n. $j_n = 2^n + (-1)^n$ be a Jacobshthal-lucas number of rank n.

Method of analysis:

The procedure for finding the triple (a, b, c) involving some interesting numbers such that the sum of any two of them is a perfect square is given in the following two sections.

Section-A

***______

Let
$$a(n) = 2CP_{2n+1}$$

$$b(n) = Dec_{2n+2} + Gno_{2n+2}$$

which are equivalent to the following two equations $a(n) = 20n^2 + 30n + 12, b(n) = 16n^2 + 30n + 13$

Now, we assume that

$$a(n)+b(n)=\alpha^2$$

Let c(n) be any non-zero integer such that

$$b(n) + c(n) = \beta^2 \tag{1}$$

$$a(n) + c(n) = \gamma^2 \tag{2}$$

Subtracting (2) from (1), we get

$$\beta^2 - \gamma^2 = b(n) - a(n) \tag{3}$$

Put $\beta = A + 1$, $\gamma = A$ in (3), we get

$$\gamma = A = -2n^2 \tag{4}$$

Substituting (4) in (2), the values of c are represented by

$$c(n) = 4n^4 - 20n^2 - 30n - 12 \tag{5}$$

Hence,

 $20n^2 + 30n + 12,16n^2 + 30n + 13,4n^4 - 20n^2 - 30n - 12$ is a triple in which the sum of any two of them is a perfect square.

Table-1: Some numerical examples are illustrated below:

п	a(n)	b(n)	c(n)	a(n) + b(n)	a(n) + c(n)	b(n) + c(n)
1	62	59	-58	112	2 ²	12
2	152	137	-88	17 ²	8 ²	72

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 04 Issue: 07 | July -2017

www.irjet.net

p-ISSN: 2395-0056

3	282	247	42	23 ²	18 ²	172
4	452	389	572	29 ²	32 ²	312
5	662	563	1838	35 ²	50 ²	49 ²

A few interesting relations among the numbers are given below:

1.
$$a(n)+b(n)=36 \operatorname{Pr} o_n+12Gno_{n-1}+13$$

2. (1/4)[a(n)+c(n)] is a bi-quadratic integer

3.
$$(1/4)[b(n)-c(n)-36\Pr o_n -12Gno_n -37]$$
 is a

bi-quadratic integer

4.
$$(1/4)[a(n)-c(n)-40\Pr o_n -10Gno_n -34]$$
 is a

bi-quadratic integer

SECTION-B

- Let $a(n) = K_{2n}$
 - $b(n) = 8j_{2n} + j_1 + j_4$

which are equivalent to the following two equations

$$a(n) = 2^{4n} + 2 \cdot 2^{2n} - 1, b(n) = 8 \cdot 2^{2n} + 26$$

Now, we assume that

 $a(n)+b(n)=\alpha^2$

Let c(n) be any non-zero integer such that

$$b(n) + c(n) = \beta^2$$

$$a(n) + c(n) = \gamma^2$$
(6)
(7)

 $\beta^2 - \gamma^2 = b(n) - a(n)$

The choices
$$\beta = A + 1, \gamma = A$$
 lead (8) to

$$\gamma = A = 3.2^{2n} - 2^{4n-1} + 13$$

Substituting (9) in (7), the values of c are represented by $c(n) = 8.2^{4n} + 2^{8n-2} - 6.2^{6n-1} + 76.2^{2n} - 26.2^{4n-1} + 170$

 $\left\{2^{4n}+2.2^{2n}-1,8.2^{2n}+26,8.2^{4n}+2^{8n-2}-6.2^{6n-1}+76.2^{2n}-26.2^{4n-1}+170\right\}$ is a triple in which the sum of any two of them is a perfect square.

Table-2: Some numerical examples are illustrated below:

п	a(n)	b(n)	c(n)	a(n) + b(n)	a(n) + c(n)	b(n) + c(n)
1	23	58	266	9 ²	17 ²	18 ²
2	287	154	4202	212	67 ²	66 ²
3	4223	538	3392426	69 ²	1843 ²	1842 ²
4	66047	2074	572	2612	31987 ²	31986 ²
5	1050623	8218	2.716515166×10 ¹¹	1029 ²	521203 ²	521202 ²
5	1050623	8218	2.716515166×10 ¹¹	1029 ²	521203 ²	5212

CONCLUSION:

In this communication, we discover the triple involving various special numbers in such a way that the sum of any two of them is a perfect square. In this manner, one may seek out other triples and quadruples satisfying some other properties.

REFERENCES:

- [1]. Baker A.,Davenport H., The equations $3x^2 2 = y^2$ and $8x^2 - 7 = z^2$, J.Math.Oxford Ser. 20 (1969),129-137.
- [2]. I.G Bashmakova(ed), Diophantus of Alexandria, Arithmetic and the Book of polygonal numbers, Nauka, Moscow, 1974.
- [3]. Dickson L.E; History of theory of numbers ,Vol.2, Chelsea , New York 1966; 513-520.
- [4]. Thamotherampillai N; The set of numbers {1, 2, 7}.Bull of Calcutta math soc.,1980; 72:195-197.
- [5]. Brown E; sets in which xy + k is always a square, Math comp., 1985; 45: 613-620.
- [6]. Gupta H, singh K; On K-triad sequences. Internet J Math Sci., 1985; 5: 799-804.
- [7]. Dujella A., Complete solution of a family of simultaneous pellian equations, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 59-67.
- [8]. Beardon AF, Deshpande MN; Diophantine triples. The athematical Gazette, 2002, 86:258-260
- [9]. Deshpande MN; Families of Diophantine triplets, Bulletin of the Marathwada Mathematical Society, 2003; 4: 19-21.

(8)

(9)

- [10].Bugeaud Y, Dujella A, Mignotte M; On the family of Diophantine triples { $k 1, k + 1, 16k^3 4k$ }. Glasgo Math J. 49(2007),333-334.
- [11].Gopalan M.A., Pandichelvi V; On the extendibility of the Diophantine triple involving Jacobsthal numbers $(J_{2n-1}, J_{2n+1} 3, 2J_{2n} + J_{2n-1} + J_{2n+1} 3)$, International journal of Mathematics and Applications, 2009;2(1):1-3.

[12]Pandichelvi V, Construction of the Diophantine triple involving polygonal numbers. Impact J SciTech., 2011; 5(1): 7-11.