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Abstract- In this communication, we discover the triple 

 cba ,,  involving some figurate numbers such that the sum 

of any two of them is a perfect square. Also, we find some 
interesting relations among the triples.  
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INTRODUCTION: Let n  be an integer. A set of positive 

integers  maaaa ,......,, 321 is said to have the                             

the property )(nD  if naa ji   is a perfect square for all 

mji 1  such a sets is called a Diophantine m-tuple. such 

sets were studied by Diophantus [1].The set of numbers 

 7,2,1 is Diophantine triple with property D(2).For an 

extensive review of various articles one may refer [2-12]. In 

this communication, we find the triple  cba ,,  involving 

centered pentagonal numbers, decagonal numbers, 

Gnomonic numbers, Kynea numbers and Jacobsthal-lucas 

numbers such that the sum of any two of them is a perfect 

square. Also, a few interesting relations among the triples are 

presented.      

Notations: 

Let 
2

255 2 


nn
CPn  be a centered pentagonal number of 

rank n . 

      nnt n 34 2
,10   be a decagonal number of rank n . 

      12  nGnon  be a Gnomonic number of rank n . 

    122 12  nn
nK  be a Kynea number of rank n . 

    nn
nj 12   be a Jacobshthal-lucas number of rank n . 

Method of analysis: 

             The procedure for finding the triple  cba ,,  involving 

some interesting numbers such that the sum of any two of 

them is a perfect square is given in the following two 
sections. 
 

Section- A 

 

Let          122  nCPna  

               2222   nn GnoDecnb  

which are equivalent to the following two equations         

                 133016,123020 22  nnnbnnna   

Now, we assume that  

                2 nbna  

Let  nc  be any non-zero integer such that  

              2)(  ncnb                                           (1)  

    

              2)(  ncna                             (2) 

Subtracting (2) from (1), we get 

             nanb  )(22                            (3) 

Put AA   ,1   in (3), we get 

            22nA                 (4) 

Substituting (4) in (2), the values of c are represented by   

              1230204 24  nnnnc                        (5) 

Hence, 

      1230204,133061,123020 2422  nnnnnnn  is a 

triple in which the sum of any two of them is a perfect 

square. 

 

Table-1: Some numerical examples are illustrated 

below: 

n   na   nb   nc   nbna )(   ncna )(   ncnb )(  

1  62  59  58  211  22  21  

2  152  137  88  217  28  27  
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3  282  247  42  223  218  217  

4  452  389  572  229  232  231  

5  662  563  1838  235  250  249  

 
A few interesting relations among the numbers are given 
below: 
1.     1312Pr36 1  nn Gnoonbna  

2.     ncna )4/1(  is a bi-quadratic integer 

3.     ]3712Pr36)[4/1(  nn Gnooncnb  is a  

     bi-quadratic integer   

4.     ]3410Pr40)[4/1(  nn Gnooncna is a   

     bi-quadratic integer  

SECTION-B 

 

Let          nKna 2  

               4128 jjjnb n   

which are equivalent to the following two equations         

                 262.8,12.22 224  nnn nbna   

Now, we assume that  

                2 nbna  

Let  nc  be any non-zero integer such that  

              2)(  ncnb                          (6)  

              2)(  ncna                           (7) 

Subtracting (7) from (6), we get 

             nanb  )(22           (8) 

The choices AA   ,1  lead (8) to 

            1322.3 142  nnA                            (9) 

Substituting (9) in (7), the values of c are represented by  

  1702.262.762.622.8 14216284   nnnnnnc                                                                                                                                                                                          

Hence,     

 1702.262.762.622.8,262.8,12.22 14216284224   nnnnnnnn

 is a triple in which the sum of any two of them is a perfect 

square. 

 

 

 

 

Table-2: Some numerical examples are illustrated 

below: 

 

CONCLUSION: 

 

      In this communication, we discover the triple involving  
various special numbers in such a way that the sum of any 
two of them is a perfect square. In this manner, one may seek 
out other triples and quadruples satisfying some other 
properties. 
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n   na   nb   nc   nbna )(

 

 ncna )(   ncnb )(

 

1  23  58  266  29  217  218  

2  287  154  4202  221  267  266  

3  4223  538  3392426  269  21843  21842  

4  66047  2074

 
572  2261  231987  231986

 

5  1050623

 
8218

 
1110716515166.2 

 

21029  2521203  2521202
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