FORMATION OF TRIPLES CONSIST SOME SPECIAL NUMBERS WITH INTERESTING PROPERTY

V. Pandichelvi ${ }^{1}$, P. Sivakamasundari ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, UDC, Trichy. ${ }^{2}$ Guest Lecturer, Department of Mathematics, BDUCC,Lalgudi, Trichy.

Abstract

In this communication, we discover the triple (a, b, c) involving some figurate numbers such that the sum of any two of them is a perfect square. Also, we find some interesting relations among the triples.

Key words: Diophantine m -tuples, polygonal numbers.
INTRODUCTION: Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, a_{3}, \ldots . . . a_{m}\right\}$ is said to have the the property $D(n)$ if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$ such a sets is called a Diophantine m-tuple. such sets were studied by Diophantus [1].The set of numbers $\{1,2,7\}$ is Diophantine triple with property $D(2)$.For an extensive review of various articles one may refer [2-12]. In this communication, we find the triple (a, b, c) involving centered pentagonal numbers, decagonal numbers, Gnomonic numbers, Kynea numbers and Jacobsthal-lucas numbers such that the sum of any two of them is a perfect square. Also, a few interesting relations among the triples are presented.

Notations:

Let $C P_{n}=\frac{5 n^{2}+5 n+2}{2}$ be a centered pentagonal number of $\operatorname{rank} n$.
$t_{10, n}=4 n^{2}-3 n$ be a decagonal number of rank n.
$G n o_{n}=(2 n-1)$ be a Gnomonic number of rank n.
$K_{n}=2^{2 n}+2^{n+1}-1$ be a Kynea number of rank n.
$j_{n}=2^{n}+(-1)^{n}$ be a Jacobshthal-lucas number of rank n.

Method of analysis:

The procedure for finding the triple (a, b, c) involving some interesting numbers such that the sum of any two of
them is a perfect square is given in the following two sections.

Section- A

Let $\quad a(n)=2 C P_{2 n+1}$

$$
b(n)=\operatorname{Dec}_{2 n+2}+G n o_{2 n+2}
$$

which are equivalent to the following two equations

$$
a(n)=20 n^{2}+30 n+12, b(n)=16 n^{2}+30 n+13
$$

Now, we assume that

$$
a(n)+b(n)=\alpha^{2}
$$

Let $c(n)$ be any non-zero integer such that

$$
\begin{align*}
& b(n)+c(n)=\beta^{2} \tag{1}\\
& a(n)+c(n)=\gamma^{2} \tag{2}
\end{align*}
$$

Subtracting (2) from (1), we get

$$
\begin{equation*}
\beta^{2}-\gamma^{2}=b(n)-a(n) \tag{3}
\end{equation*}
$$

Put $\beta=A+1, \gamma=A$ in (3), we get

$$
\begin{equation*}
\gamma=A=-2 n^{2} \tag{4}
\end{equation*}
$$

Substituting (4) in (2), the values of c are represented by

$$
\begin{equation*}
c(n)=4 n^{4}-20 n^{2}-30 n-12 \tag{5}
\end{equation*}
$$

Hence,

$$
\left\{20 n^{2}+30 n+12,16 n^{2}+30 n+13,4 n^{4}-20 n^{2}-30 n-12\right\} \text { is a }
$$ triple in which the sum of any two of them is a perfect square.

Table-1: Some numerical examples are illustrated below:

n	$a(n)$	$b(n)$	$c(n)$	$a(n)+b(n)$	$a(n)+c(n)$	$b(n)+c(n)$
1	62	59	-58	11^{2}	2^{2}	1^{2}
2	152	137	-88	17^{2}	8^{2}	7^{2}

3	282	247	42	23^{2}	18^{2}	17^{2}
4	452	389	572	29^{2}	32^{2}	31^{2}
5	662	563	1838	35^{2}	50^{2}	49^{2}

A few interesting relations among the numbers are given below:

1. $a(n)+b(n)=36 \operatorname{Pr} o_{n}+12 G n o_{n-1}+13$
2. $(1 / 4)[a(n)+c(n)]$ is a bi-quadratic integer
3. $(1 / 4)\left[b(n)-c(n)-36 \operatorname{Pr} o_{n}-12 G n o_{n}-37\right]$ is a
bi-quadratic integer
4. $(1 / 4)\left[a(n)-c(n)-40 \operatorname{Pr} o_{n}-10 G n o_{n}-34\right]$ is a
bi-quadratic integer

SECTION-B

Let $\quad a(n)=K_{2 n}$

$$
b(n)=8 j_{2 n}+j_{1}+j_{4}
$$

which are equivalent to the following two equations

$$
a(n)=2^{4 n}+2.2^{2 n}-1, b(n)=8.2^{2 n}+26
$$

Now, we assume that

$$
a(n)+b(n)=\alpha^{2}
$$

Let $c(n)$ be any non-zero integer such that

$$
\begin{align*}
& b(n)+c(n)=\beta^{2} \tag{6}\\
& a(n)+c(n)=\gamma^{2} \tag{7}
\end{align*}
$$

Subtracting (7) from (6), we get

$$
\begin{equation*}
\beta^{2}-\gamma^{2}=b(n)-a(n) \tag{8}
\end{equation*}
$$

The choices $\beta=A+1, \gamma=A$ lead (8) to

$$
\begin{equation*}
\gamma=A=3.2^{2 n}-2^{4 n-1}+13 \tag{9}
\end{equation*}
$$

Substituting (9) in (7), the values of c are represented by $c(n)=8.2^{4 n}+2^{8 n-2}-6.2^{6 n-1}+76.2^{2 n}-26.2^{4 n-1}+170$
Hence,
$\left\{2^{4 n}+2.2^{2 n}-1,8.2^{2 n}+26,8.2^{4 n}+2^{8 n-2}-6.2^{6 n-1}+76.2^{2 n}-26.2^{4 n-1}+170\right\}$ is a triple in which the sum of any two of them is a perfect square.

Table-2: Some numerical examples are illustrated below:

n	$a(n)$	$b(n)$	$c(n)$	$a(n)+b(n)$	$a(n)+c(n)$	$b(n)+c(n)$
1	23	58	266	9^{2}	17^{2}	18^{2}
2	287	154	4202	21^{2}	67^{2}	66^{2}
3	4223	538	3392426	69^{2}	1843^{2}	1842^{2}
4	66047	2074	572	261^{2}	31987^{2}	31986^{2}
5	1050623	8218	$2.716515166 \times 10^{11}$	1029^{2}	521203^{2}	521202^{2}

CONCLUSION:

In this communication, we discover the triple involving various special numbers in such a way that the sum of any two of them is a perfect square. In this manner, one may seek out other triples and quadruples satisfying some other properties.

REFERENCES:

[1]. Baker A.,Davenport H., The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, J.Math.Oxford Ser. 20 (1969),129-137.
[2]. I.G Bashmakova(ed), Diophantus of Alexandria, Arithmetic and the Book of polygonal numbers, Nauka, Moscow, 1974.
[3]. Dickson L.E; History of theory of numbers ,Vol.2, Chelsea , New York 1966; 513-520.
[4]. Thamotherampillai N; The set of numbers $\{1,2,7\}$.Bull of Calcutta math soc.,1980; 72:195-197.
[5]. Brown E; sets in which $x y+k$ is always a square, Math comp., 1985; 45: 613-620.
[6]. Gupta H, singh K; On K-triad sequences. Internet J Math Sci., 1985; 5: 799-804.
[7]. Dujella A., Complete solution of a family of simultaneous pellian equations, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 59-67.
[8]. Beardon AF, Deshpande MN; Diophantine triples. The athematical Gazette, 2002, 86:258-260
[9]. Deshpande MN; Families of Diophantine triplets,Bulletin of the Marathwada Mathematical Society, 2003; 4: 19-21.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
[10].Bugeaud Y, Dujella A, Mignotte M; On the family of Diophantine triples $\left\{k-1, k+1,16 k^{3}-4 k\right\}$. Glasgo Math J. 49(2007),333-334.
[11].Gopalan M.A., Pandichelvi V; On the extendibility of the Diophantine triple involving Jacobsthal numbers $\left(J_{2 n-1}, J_{2 n+1}-3,2 J_{2 n}+J_{2 n-1}+J_{2 n+1}-3\right)$, International journal of Mathematics and Applications, 2009;2(1):1-3.
[12]Pandichelvi V, Construction of the Diophantine triple involving polygonal numbers. Impact J SciTech., 2011; 5(1): 7-11.

