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Abstract- In this communication, we discover the triple
(a, b, C) involving some figurate numbers such that the sum

of any two of them is a perfect square. Also, we find some
interesting relations among the triples.
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INTRODUCTION: Let N be an integer. A set of positive
integers {al,a2,a3, ...... am}is said to have the
the property D(n) if a;a; +n is a perfect square for all
1<i < j <m suchasetsis called a Diophantine m-tuple. such
sets were studied by Diophantus [1].The set of numbers
{L2,7}is Diophantine triple with property D(2).For an
extensive review of various articles one may refer [2-12]. In
this communication, we find the triple (a, b,C) involving

centered pentagonal numbers, decagonal numbers,
Gnomonic numbers, Kynea numbers and Jacobsthal-lucas
numbers such that the sum of any two of them is a perfect
square. Also, a few interesting relations among the triples are
presented.

Notations:

2
Let CP, = Snf+Sn+2 be a centered pentagonal number of
rankN.

tion = 4n% -3n bea decagonal number of rank N.
Gno, = (2n —l) be a Gnomonic number of rank N.

K, =22"+2™! _1 be a Kynea number of rank N .

them is a perfect square is given in the following two
sections.

Section- A

Let  a(n)=2CP,,,
b(n) = Decyn., +GNOy.
which are equivalent to the following two equations
a(n)=20n% +30n+12,b(n)=16n? +30n +13
Now, we assume that
a(n)+b(n)=a?

Let c(n) be any non-zero integer such that

b(n) +¢(n) = 5 (1)
a(n) +c(n)=»? @
Subtracting (2) from (1), we get
B2 ~7% =b(n) -a(n) (3)
Put f=A+1y=A in(3), we get
y=A=-2n° (4)
Substituting (4) in (2), the values of c are represented by
c(n)=4n* —20n? —30n-12 (5)
Hence,

{20n? 300 +1236n2 +30n +13.4n* —20n2 ~30n-12} isa

triple in which the sum of any two of them is a perfect
square.

Table-1: Some numerical examples are illustrated

jn = 2" +(~1)" be a Jacobshthal-lucas number of rank n. below:
. a(n) b(n) c(n) a(n)+ b(n) a(n) + c(n) b(n) + c(n)
Method of analysis: "
1 62 59 58 112 22 2
The procedure for finding the triple (a, b, C) involving
some interesting numbers such that the sum of any two of 2 192 137 8 172 2 72
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3 282 247 42 232 182 172
4 452 389 572 292 322 312
5 662 563 1838 352 502 492

A few interesting relations among the numbers are given
below:

1. a(n)+b(n)=36Pro, +12Gno, ; +13

2. (1/4)[a(n)+c(n)] is a bi-quadratic integer

3.1/ 4)[b(n)—c(n)—-36Pro, —~12Gno, —37] isa
bi-quadratic integer

4. (1/ 4)[a(n)—c(n)—40Pro, —10Gno, —34]is a
bi-quadratic integer

SECTION-B

Let  a(n)=K,,
b(n) =8y + i1 + Js

which are equivalent to the following two equations
a(n)=2""+22%" ~1,b(n)=8.2" + 26

Now, we assume that
a(n)+b(n)=a?

Let c(n) be any non-zero integer such that

b(n) +¢(n) = 5 (6)

a(n) +c(n)=»* 7
Subtracting (7) from (6), we get

B2 ~r* =b(n)-a(n) 8)
The choices = A+1y = A lead (8) to

y=A=322"_21113 (9)

Substituting (9) in (7), the values of c are represented by
c(n)=8.2%" +2°"% —6.2°"" +76.2°" —26.2*"" +170

Hence,

24 227 18277 +268.2°" + 282 6,25 4 76.2%" ~ 26.2°™ 4170

is a triple in which the sum of any two of them is a perfect
square.

Table-2: Some numerical examples are illustrated

below:
n a(n) b(n) c(n) am+b(n) | am)+ci) | b +cln
1 23 58 266 92 172 182
2 287 154 4202 o2 672 662
3 4223 | 538 3302426 692 18432 18422
4 | 66047 | 2074 572 2612 319872 319862
5 | 1050623 | 8218 | ,;16515166x10lt | 10202 5212032 | 5212022

CONCLUSION:

In this communication, we discover the triple involving
various special numbers in such a way that the sum of any
two of them is a perfect square. In this manner, one may seek
out other triples and quadruples satisfying some other
properties.
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