
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2040

An Improved De-Duplication Technique for Small Files in Hadoop

 Ishita Vaidya1, Prof. Rajender Nath2

1M.Tech Student , Department of Computer Science and Applications , Kurukshetra University, Kurukshetra
2 Professor, Department of Computer Science and Applications , Kurukshetra University, Kurukshetra

---***--

Abstract: HDFS works as one of the core component of
the Hadoop ecosystem, as it stores the large data sets in a
master slave architecture using the commodity hardware.
To store files in HDFS, many de-duplication techniques are
given but the existing techniques do not merge the unique
small files together to improve the Name node storage
efficiency. To address the problem of small files an
improved de-duplication technique is proposed in this
paper that eliminates the files redundancy by using hash
index, it allows to merge the unique small files only. The
proposed technique is experimentally found better than
the original HDFS technique in writing time and the
overall storage efficiency.

Keywords: De-Duplication, Hadoop, Hadoop
distributed file system, Small File Problem, Small
File Storage.

I. INTRODUCTION

Hadoop, an open source software framework is an
important tool to manage and store big data using the
commodity hardware. The large companies like
Facebook, Netflix, Yahoo and Amazon uses Hadoop to
manage the unstructured large data sets [1]. Hadoop
uses two main components, the Map reduce framework
and the Hadoop distributed file system as the basic tool
for the big data analytics. The map reduce framework
use the mappers and reducers to organize and process
the data in the multiple computing nodes. The map-
reduce and the HDFS work on the same data nodes. The
distributed file system of Hadoop works as the database
of the large files and stores the data in the data nodes
with the metadata in the name node. HDFS works on the
commodity hardware and thus to improve the fault
tolerance of the system, the data is stored with 3 replicas
on the same name node and another name node. This
makes the HDFS as Fault Tolerant, scalable and low cost
system to store the large data sets.

Small File Problem in HDFS : HDFS file system is
designed to work on large datasets. Small files on the
other hand imposes a heavy burden on the Hadoop
distributed file system. The files less than the default
block size are considered as the small files in HDFS [1].
The small files do not decrease the storage efficiency of
the data node which can be explained as if the size of
small file is 4MB and the data block size is 64MB , the
4MB file takes only the required space in the data block
and the rest is free for the further files to be stored. So

the small file problem in HDFS can be explained in the
following manner.

(i) The meta data of the files are stored in the name
node and when large number of small files are stored in
the data node, the meta data of each small file takes a
huge amount of space in the name node, which decreases
the storage efficiency of the name node.

(ii) The map file needs a lot of seeks and hops to
map the large number of small files instead of mapping
small number of large files which actually concludes for a
heavy traffic in the Hadoop distributed file system.

De-Duplication: Data De-duplication is a productive
approach to avoid the redundant data in the big data
technologies and thus reduce the network traffic by
avoiding duplicate data over transmissions. The de-
duplication strategy is used by using different hash
functions such as MD5, SHA1, SHA256, SHA512, RipeMD
160, Tiger128, Tiger160, Whirlpool etc.

The workflow of the de-duplication process depends
upon the type of data as the data is divided into chunks
or the files are directly used to create the hash values
and check for the duplicate data. The de- duplication
phenomena had been used with Hadoop Distributed File
System earlier to reduce the duplicate entries in the data
nodes which can be described through some literature
survey in the section followed.

In this paper the combination of the file merging and the
de-duplication technique is used to increase the
efficiency of the Hadoop distributed file system. The
basic approach is to remove the duplicate entries of the
same files and index the map of the duplicate files to the
duplicate index of the proposed system. A file merging
technique is also used to merge the small files together
on the basis of the incoming files and then a merged file
index is added using the start position and the end
position of the small files to access the small files from
the merged file.

The rest of the paper is organized as: Section 2 discusses
the work that has been carried out in small files and de-
duplication, section 3 describes the proposed technique
with its architecture, section 4 describes the experiments
and results carried out through the technique and finally
section 5 concludes the paper with the future scope of
this method.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2041

II. RELATED WORK

An optimized approach was developed in 2012 by B.
Dong et al. [2] to store and access the small files on
Hadoop distributed file system. In this approach first of
all, the cut off points between the large and the small
files was given and then a file merging and prefetching
scheme was introduced to handle the small files in HDFS.
The files were merged together on the basis of their
correlation phenomena where the files that belonged to
a large logical structure were merged together and then
a file prefecthing and caching mechanism was also added
to the merged files.

In 2013 Chandrasekar et al. [3] introduced Extended
Hadoop distributed system that merged the small files
on the client side such that the client specified the name
of the small files to be merged. The phenomena that the
files were not split into two blocks was also considered.
In this phenomena, if the file size was larger than the
remaining data node size , then the file was sent to the
next data node instead of splitting the file into two parts.
In this approach the user specified the name of the small
file to fetch the file from the merged file. A remote
procedure call was used to read a file from the Data
Node and a prefetching and caching mechanism was
also used. This approach improved the storage efficiency
of the Name Node and access efficiency of Data Node.

In 2014 Guru Prasad et al.[4] extended the basic Hadoop
model and named it as the optimized approach which
consist of the merge model. In this approach the files
were directly merged from the output of the Map Reduce
phase by combining them into large files. The large files
were then divided into blocks according to block size.
The data blocks were then again processed by Map
Reduce. The approach decreased the time taken to move
the file into HDFS and increased the Name Node storage
efficiency as compared to original HDFS.

An Improved HDFS was proposed in 2016 by L.
Changtong [5] that added a processing layer in the basic
Hadoop architecture such that the files that were
considered as the small files were merged in the file
merging unit with the Temporary Index. The Temporary
Index was created using an incremental offset with the
start position considering the length of the small files.
The small files and the temporary index were merged
together using an append writing operation. The
Improved HDFS approach thus decreased the Name node
memory usage and the access time per 1 MB than that of
HAR and original HDFS but the writing time was bit
more than HAR and quiet less than original HDFS.

Yonghuo et al.[6] presented a small file processing
middleware that used the concept of temporal continuity
to merge the small files in the merged file. In this
phenomena the a time unit was set such that the files

that came within that period was considered to be
merged together. An index structure was introduced
with the merged files that used the trie-tree approach to
retrieve the small files. In addition to the file merging
and indexing structure , a caching structure was also
added to improve the access time of the approach. The
caching and prefetching structure actually fetched the
correlated files in order to increase the retrieval speed.

A De Du system [7] was developed in 2013 that used
HDFS storage system with HBase employed in order to
implement the indexing scheme for the duplicate files. In
this approach the new incoming file was considered as
the source data and was saved inside the storage system
and the hash value was stored in the HBase index of the
system. In the system, whenever a duplicate file entered ,
the system did not upload the file and instead update the
user with a link to the same file that was already existing
in the system. The system increased the writing
efficiency and removed the overall redundancy thus
improving the storage efficiency. Although this approach
improved the storage efficiency but unique small files
were still uploaded to HDFS, that decreased the name
node storage efficiency which was major drawback for
the approach.

A dynamic de-duplication decision making system was
introduced in 2014 [8], which used the de-duplication
strategy to improve the utilization space in the data
centres that used the Hadoop distributed File System as
the storage systems. The proposed system deleted the
useless duplicates in order to improve the storage
efficiency of the data centres . This approach used a 2-
tier storage architecture that is the pre filter and the post
filter. The pr filter worked on the file level while the post
filter worked on the block level. The pre filter worked on
the client side as it checked the file before uploading , If
the file already existed in the system , the redundant file
was not uploaded. In the post filter of the proposed
approach the redundant data blocks were removed
when the already existing data was updated again thus
creating the redundant blocks. The proposed approach
increased the overall capacity of the system thus
improving the utilization space of the data centres for big
data management.

A bucket based data de-duplication technique was
introduced in 2016 [9] in which a fixed size chunks were
made from data and then these chunks of data were sent
to the MD5 hash map further where the hash values of
the fixed size chunks were created. The hash values of
these chunks were compared with data from the map
reduce algorithm such that the duplicate entries were
not stored in the Hadoop Distributed File System and
the proposed approach approved a high reduction in
data size of storage system with less amount of time
consumed for hashing and maintaining the chunk size.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2042

III. PROPOSED DE-DUPLICATION TECHNIQUE

To overcome the issue of small file problem in HDFS as
mentioned above, an improved technique of file merging
and data de-duplication is combined together. In this
approach a pre-processing unit is added to the original
HDFS structure which checks for small files, duplicate
entries and then merge the unique small file. The pre-
processing unit further contains the file judging unit, the
de-duplication unit and the file merging unit which are
discussed below as three subparts of our proposed
approach:

Figure 1. Architecture of The De-Duplication Technique

The File Judging unit: This unit judges the incoming
file weather it is small or large. The files with size same as
that of block size takes roughly same amount of memory
on the name node and thus can be considered as large files
and the file size less than block size is considered as small
files. So the small files are send for further processing into
the hash value calculator in the de-duplication unit and the
large files are directly send to the HDFS storage system.

The De-Duplication Unit: It calculates the hash values
for the incoming small files using MD5 hash function and
then compares the new hash value with already existing
hash value. If the hash value already exists, a map is
created with a link to the already existing file and the
count is incremented by 1. If the hash does not exist then
the new file is added to the file merging unit and the new
hash value is send to the duplicate index in the data node
where the files are to be saved after merging. The working
steps of the de-duplication unit are:

Pseudo Code for De-duplication:

//Input: Small Files
//Output: Merged file with duplicate index and
//merged index
Step 1: Read the small Files
Step 2: Calculate Hash value
Step 3: If (calculated hash ! = existing hash)
 { Store Hash in duplicate index &&
 Send the file to merging unit &&
 Store the path in merged index}
 Else If (calculated index == existing index)
 { Map the file from merged index &&
 Link the file map with hash value}
Step 4:Send the files to the file merging unit.

 Small File

 Yes No

Figure 3 . Flowchart for the De-Duplication Technique

USER USER USER

File Judging Unit

De- Duplication Unit

File Merging Unit

Name Node

Data

Node

Data

Node

Data

Node

Start

File

 File

size <

64 MB

Calculate Hash value by

using MD5

Does Hash

value exist

in index ?

Map a link to

existing hash

Record new

hash value

Merge Files Store

Files

More

files

Stop

No

Yes

Large

file

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2043

The flowchart in figure 3 explains the processing
structure of the de-duplication unit .

The File Merging Unit: The file merging unit merges
the small files together by saving the files in the
incoming order with the start and the end position. The
files in this unit when reaches the block size, then the
files are merged together and a merged as well as
duplicate index are added to the data node with the
merged file.

 (Start Pos) (End Pos)

File 1 File 2 ... File n

Figure 2 . Merged Index for the merged Small Files

The merged index in Figure 2 merged the small files
using the start position and the end position of the small
files. The end position of one file is considered as the
start position of the next file thus storing the n number
of files in the same format.

IV. EXPERIMENTAL RESULTS AND

DISCUSSIONS

The proposed technique was implemented in Java
language. The dataset is generated by a random file
creator and the number of files included are 500, 1000,
2000, 4000 and 6000 with 30%, 36%, 68%, 48% and
57% duplicate files respectively. The size of small files
are 1KB - 10KB and large files are also simulated. The
writing time and storage efficiency of Data Node in the
proposed approach is compared with that of original
HDFS . The index storage of Name node and the
combined index storage of the proposed approach is
also compared with that of the default HDFS
architecture.

The parameters used to analyze the performance of the
proposed approach are: a) Writing Time of the Files, b)
Data Node storage efficiency, c) Name Node storage
efficiency, d) Combined Meta Data Size.

a) Writing Time of Files:

Writing time is the time required to upload the small
files into the HDFS system.

Figure 4. Writing Time of Files

Figure 4 shows the comparative graph between the
original HDFS and the proposed approach. As the
duplicate files are not written again, the writing time of
the files is decreased and the efficiency of the proposed
approach is found better than the HDFS considerably.

b) Storage Efficiency:

Storage efficiency of Data Node is referred to as the
combined or the merged file stored in the data node. The
overall storage efficiency is improved using the de-
duplication technique in the proposed approach.

Figure 5. Storage Efficiency of Data Node

The graph in Figure 5 shows the comparative analysis of
the storage efficiency of the data node for original HDFS
and the proposed approach. As the number of files
increases, the storage space for combined file also
increases linearly but the storage space for combined file
in the proposed approach is less as compared to original
HDFS due to the de-duplication phenomena.

c) Name Node Storage Efficiency

The Name Node storage efficiency is evaluated from the
meta data stored in the Name Node for the combined file.
The Name Node storage efficiency is increased with the
merging of small files and avoiding meta data for
redundant files.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2044

Figure 6. Name Node Storage Efficiency

The graph in the Figure 6 gives an analysis on the Name
Node storage efficiency between the two approaches such
that in original HDFS the Name Node storage is on a linear
growth that makes the Name Node as a bottleneck in the
original HDFS architecture.

d) Combined Meta Data Size

The combined meta data is the overall index size as two
more indexes are added in the proposed approach. A
duplicate index is added to the proposed approach with
already existing Name Node meta data storage and the
combined file size. The overall index size of the proposed
approach is still less than that of the original HDFS.

Merged Index Size: The merged index size is the size of
the index of the merged small files. The merged index
with the de-duplication concept takes less amount of
space as compared to the one without the de-duplication
phenomena.

Figure 7: Merged Index Size

The graph in Figure 7 explains the difference between the
merged files with de-duplication and the merged files
without de-duplication phenomena.

Duplicate Index Size: Duplicate Index is the hash
values stored to check the redundant data and thus
remove the data duplicacy in the file storage system.

Figure 8 : Duplicate Index Size

The graph in the figure 8 only shows the increase in the
duplicate file index that is the number of hash value with
an increase in the number of files.

Name Node Storage: The name node storage thus
defined as the amount of meta data stored in the name
node. The Name Node storage in the proposed approach
is comparatively very low.

The graph Figure 6 shows the comparison between the
Name Node index storage in the original HDFS and the de-
duplicate technique.

Combined Index Size: The combined index is the sum
of all the index and the Name Node storage. The
combined index of the proposed approach take less
amount of space as compared to original HDFS.

Figure 9: Combined Index Size

Figure 9 analyzes the overall combined index of the
approaches and thus satisfies that the proposed approach
takes less amount of space as compared to original HDFS.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2045

V. CONCLUSION

This paper has proposed an improved de-duplication
technique by adding a pre-processing unit, which checks
for small files duplicate entries and then merges unique
files only. The proposed technique has been
implemented in Java and evaluated against the original
Hadoop technique. Experimentally, It has been found
that the writing time, the data node storage efficiency,
the Name Node storage efficiency and the combined
meta data index efficiency have improved considerably
as compared to Hadoop technique.

VI. REFRENCES

[1] S. Bende and R. Shedge, "Dealing with Small Files

Problem in Hadoop Distributed File System," in

Elsevier Procedia 7th International Conference on

Communication, Computing and Virtualization,

Maharshtra, 2016, pp. 1001-1012.

[2] B.Dong et al., "An optimized approach for storing and

accessing small files in cloud storage," Journal of

Network and Computer Applications , Elsevier, vol.

35, pp. 1847-1862, July 2012.

[3] Chandrasekar S, Dakshinamurthy R, Seshakumar P G,

Prabhavaty B, and C Babu, "A Novel Indexing Scheme

foe Efficient Handling of Small Files in Hadoop

Distributed File System," in Proceedings of IEEE

International Conference on Computer

Communication and Informatics (ICCCI-2013),

Coimbatore, 2013, pp. 1-8.

[4] G. Prasad M S, Nagesh H R, and Deepthi M,

"Improving the performance of processing for small

fies in Hadoop:A Case study of Weather Data

Analytics," International Journal of Computer Science

and Information Technologies, vol. 5, no. 5, pp. 6436-

6439, 2014.

[5] L. Changtong, "An Improved HDFS for Small Files," in

International Conference in Advance Communication

and Technology, Wuhan , China, 2016, pp. 474-477.

[6] Y.Huo, Z.Whang, XX.Zhang, W.Li, and Z.Cheng, "SFS:A

Massive small file processing middleware in

Hadoop," in The 18th Asia-Pacific Network

Operations and Management

Symposium(APNOMS)2016, China, 206, pp. 1-4.

[7] Z Sun, J Shen, and J Young, "A novel approach to data

deduplication over the engineering-oriented cloud

systems," University of Wollongong Research Online,

pp. 45-57, 2013.

[8] R-S Chang, C-S Liao, K-Z Fan, and C-M Wu, "Dynamic

Deduplication Decision in a Hadoop Distributed File

System," International Journal of Distributed Sensor

Networks, pp. 1-14, April 2014.

[9] N Kumar, R. Rawat, and S. C. Jain, "Bucket Based Data

Deduplication Technique," in 5th International

Conference on Reliability, Infocom Technologies and

Optimization (ICRITO) (Trends and Future

Directions), Noida, 2016, pp. 267-271.

