

### Design of reinforced concrete structures using neural networks

### Chandan.M.K<sup>1</sup>, Raghu Prasad.B.K<sup>2</sup>, Amarnath.K<sup>3</sup>

<sup>1</sup>Student, The Oxford College of Engineering, Bangalore <sup>2</sup>Retd.IISc Professor, Bangalore <sup>3</sup> Professor and Head, Dept. of Civil Engineering, The Oxford college Of Engineering, Karnataka, India \_\_\_\_\_\*\*\*\_\_\_\_\_

**Abstract** - Optimization techniques play an important role in structural design. The purpose is to find the best ways so that a designer or a decision maker can derive maximum benefit from the available resources. In the present study a column, a beam and a G+4 storey model are modelled using STAAD PRO v8i software. Static analysis of the structure is carried out and the results like axial forces (P), bending moments (M), support reactions(R) are recorded. The results are tabulated along with other parameters like Area of steel(Ast), Breadth of beam (B), Depth of beam or slab (D), Characteristic compressive strength of concrete (fck), Characteristic strength of steel (fy), Design bending moment (Mu) and percentage of steel (pt). The design of Reinforced concrete members under uni axial bending is done manually as per IS-456:2000 and SP 16 and percentage of steel is calculated and noted down. The results from the static analysis of the structure which are in tabulated form are tested and trained in MATLAB neural network toolbox. The predicted values for the percentage of steel by neural network toolbox are noted down. The percentages of error for the predicted values are almost negligible when compared to those obtained by conventional method for most of the cases and are in good agreement with one another.

#### Key Words: Optimization, Artificial Neural Network, STAAD PRO, MATLAB, IS-456: 2000 etc...

### **1. INTRODUCTION**

The artificial neural network (ANN) was developed 50 years ago. ANNs are the simplifications of biological neural networks. The neural networks are very important tool for studying the structure of human brain. Due to the complexity and for complete understanding of biological neurons, many architectures of ANN have been reported in the present study.

### 1.1 Aim of neural networks

The aim of neural networks is to replicate the human ability to adapt to changes taking place in the current environment. This depends on the capability to learn from the events that have happened in the past and to be able to apply that to future situations.

For example : The decisions made by trainee doctors are rarely based on a single symptom due to complexity of human body. But an experienced doctor is far more likely to make a good and effective decision than a trainee, because

from his past experiences he knows what to look out for and what not to worry about. Similarly it would be beneficial if machines too, could utilize past events as part of the criteria on which their decisions are based, and this is the role that neural networks seek to fill.

### **1.2 Artificial neural networks**

ANNs consist of a number of processing units analogous to neurons in the brain called nodes. Each node has a function called node function which are associated with a set of local parameters . The local parameters determine the output of the node when input is given. If the local parameters are modified , the node functions may get altered. Hence, the artificial neural networks can be defined as the information-processing system in which the elements called neurons, process the information.

### 1.3. Structure of neural network

The neural networks can be single layered or multi-layered. A single layered neural network is composed of two input neurons and one output neuron. A multi-layered artificial neural network(MNN) consists of input layer, output layer and a hidden layer of neurons. The hidden layer of neurons is also called as intermediate layer of neurons. A three layered neural network is shown in the figure below.



Fig -1:

The above figure shows densely interconnected three layered static neural network in which each circle represents an artificial neuron.

In a MNN, the input layer is connected to hidden layer and the hidden layers are inter-connected to layer of outputs. The neurons in the input layer represent the information that is fed into the network. The activity of neurons in the intermediate layer depends on the activity of neurons in input layer. Likewise, the activity of neurons in the output layer depends on the activity of neurons in the intermediate layer.

### 2. PARAMETERS IN THE STUDY

| Pu  | Axial load                                                          |
|-----|---------------------------------------------------------------------|
| В   | Breadth of member                                                   |
| D   | Overall depth of member                                             |
| Ast | Area of steel                                                       |
| fck | Characteristic compressive strength of oncrete or grade of concrete |
| fy  | Characteristic strength of steel or grade<br>of steel               |
| Mu  | Design bending moment                                               |
| Pt  | Percentage of steel                                                 |

### 3. ANALYTICAL STUDY

From the analysis of G+4 storey structure carried out in STAAD PRO software results are taken. The design of columns loaded axially under uni-axial bending and the design of simply supported singly reinforced beams are done as per IS:456-2000 and SP-16 code books. The same design of columns and beams of the G+4 storey structure is carried out in neural network toolbox of MATLAB in the form of trained computer programme. Both the cases are compared with one another.

| Pu (N) 761967<br>Breadth (mm) 230       |           | ũ       | 4       | D        | 9        | 7        | œ        | 6        | 10       |
|-----------------------------------------|-----------|---------|---------|----------|----------|----------|----------|----------|----------|
| Breadth (mm) 230                        | 578928    | 512476  | 135530  | 724123   | 379050   | 871473   | 847200   | 912968   | 642114   |
|                                         | 230       | 230     | 230     | 230      | 230      | 230      | 230      | 230      | 230      |
| Depth (mm) 600                          | 600       | 600     | 380     | 600      | 600      | 600      | 600      | 600      | 600      |
| Moment (N- 589500<br>mm)                | 3 8726000 | 8716000 | 1397000 | 87331000 | 75315000 | 74193000 | 82397000 | 64645000 | 25650000 |
| Cover (mm) 40                           | 40        | 40      | 40      | 40       | 40       | 40       | 40       | 40       | 40       |
| Factored load 761967 (N)                | 578928    | 512476  | 135530  | 724123   | 379050   | 871473   | 847200   | 912968   | 642114   |
| Grade of 25<br>concrete                 | 25        | 25      | 25      | 25       | 25       | 25       | 25       | 25       | 25       |
| Grade of steel 500 (N/mm <sup>2</sup> ) | 500       | 500     | 500     | 500      | 500      | 500      | 500      | 500      | 500      |
| % of steel                              | 0.8       | 0.8     | 0.8     | 1.3      | 1.2      | 2.3      | 2        | 2.2      | 1.4      |

**Table 1:** Input values calculated for short columns using<br/>excel spread sheets for 10 sets



1

Г

1

Г

### **Table 2 :** Training data for short column for 10 sets

- 1

-

-

# **Table 3 :** Input values calculated for simply supportedbeams using excel sheets for 10 sets.

| 10          | 642114 | 230          | 600        | 25650000          | 40         | 642114               | 25                                           | 500                       |
|-------------|--------|--------------|------------|-------------------|------------|----------------------|----------------------------------------------|---------------------------|
| 6           | 912968 | 230          | 600        | 64645000          | 40         | 912968               | 25                                           | 500                       |
| 80          | 847200 | 230          | 600        | 82397000          | 40         | 847200               | 25                                           | 500                       |
| 7           | 871473 | 230          | 600        | 74193000          | 40         | 871473               | 25                                           | 500                       |
| 9           | 379050 | 230          | 600        | 75315000          | 40         | 379050               | 25                                           | 500                       |
| ß           | 724123 | 230          | 600        | 87331000          | 40         | 724123               | 25                                           | 500                       |
| 4           | 135530 | 230          | 380        | 1397000           | 40         | 135530               | 25                                           | 500                       |
| 3           | 512476 | 230          | 600        | 8716000           | 40         | 512476               | 25                                           | 500                       |
| 2           | 578928 | 230          | 600        | 8726000           | 40         | 578928               | 25                                           | 500                       |
| 1           | 761967 | 230          | 600        | 5895000           | 40         | 761967               | 25                                           | 500                       |
| No. of sets | Pu (N) | Breadth (mm) | Depth (mm) | Moment (N-<br>mm) | Cover (mm) | Factored load<br>(N) | Grade of<br>concrete<br>(N/mm <sup>2</sup> ) | Grade of steel<br>(N/mm²) |

| 272 273 255 | 25 25 25 | 600 600 600 | 54500000 186000000 55400000 | 17400000 30800000 98400000      | 10300000 31000000 179000000  | 25 25 25                 | 500 500 500 | 0.19 0.71 0.19                     | 0.65 1.22 0.35                      |                |
|-------------|----------|-------------|-----------------------------|---------------------------------|------------------------------|--------------------------|-------------|------------------------------------|-------------------------------------|----------------|
| 253         | 25       | 380         | 62600000                    | 63300000                        | 14600000                     | 25                       | 500         | 0.27                               | 0.38                                |                |
| 251         | 25       | 600         | 74800000                    | 11100000                        | 10400000                     | 25                       | 500         | 0.32                               | 0.39                                |                |
| 244         | 25       | 600         | 10100000                    | 175000000                       | 152000000                    | 25                       | 500         | 0.36                               | 99.0                                | L C            |
| 246         | 25       | 600         | 4300000                     | 77200000                        | 5830000                      | 25                       | 500         | 0.19                               | 0.27                                | ,<br>,         |
| 247         | 25       | 600         | 43500000                    | 63200000                        | 71400000                     | 25                       | 500         | 0.20                               | 0.22                                | 10.0           |
| 245         | 25       | 600         | 10300000                    | 15600000                        | 157000000                    | 25                       | 500         | 0.37                               | 0.58                                | 270            |
| 252         | 25       | 600         | 7540000                     | 10200000                        | 11200000                     | 25                       | 500         | 0.30                               | 0.36                                |                |
| Beam No.    | Cover    | Depth (mm)  | Span Moment (N-<br>mm)      | Left hand support<br>moment (N- | Right hand<br>support moment | fck (N/mm <sup>2</sup> ) | Fy          | Percentage of<br>steel at mid span | Percentage of<br>steel at left hand | Doucoutocco of |



**Table 4:** Training data for simply supported beam for 10sets

| 10          | 252      | 230             | 600        | 75.4                                       | 40         | 25                              | 500                       |
|-------------|----------|-----------------|------------|--------------------------------------------|------------|---------------------------------|---------------------------|
| 6           | 245      | 230             | 600        | 103                                        | 40         | 25                              | 500                       |
| 8           | 247      | 230             | 600        | 43.5                                       | 40         | 25                              | 500                       |
| 7           | 246      | 230             | 009        | 43                                         | 40         | 25                              | 500                       |
|             | 44       | 30              | 00         | .01                                        | 0          | 5                               | 00                        |
| 2           | 251 25   | 230             | 600        | 74.8                                       | 40         | 25 25                           | 200                       |
|             | 53       | 30              | 80         | 52.6                                       | 01         | 55                              | 009                       |
| 3           | 272      | 230 23          | 600        | 54.5                                       | 40         | 25 25                           | 500                       |
| 2           | 273      | 230             | 600        | 186                                        | 40         | 25                              | 500                       |
| 1           | 255      | 230             | 600        | 55.4                                       | 40         | 25                              | 500                       |
| No. of sets | Beam no. | Breadth<br>(mm) | Depth (mm) | Span Moment<br>X10 <sup>6</sup> (N-<br>mm) | Cover (mm) | Grade of<br>concrete<br>(N/mm²) | Grade of steel<br>(N/mm²) |
|             |          |                 |            |                                            |            | -                               |                           |

# 3.1 Optimized response spectrum results in MATLAB

The response spectrum analysis of the above mentioned G+4 storey structure is carried out in STAAD PRO software and the maximum results of nodal displacement, moments and base shear are taken.

### Table 5 : Input data

| Total height of the structure  | 21 m    |
|--------------------------------|---------|
| Maximum width of the structure | 21.03 m |
| Zone                           | 0.1     |
| Number of storeys              | 7       |
| Number of bays                 | 5       |

### **Table 6 :** Target data obtained from Response spectrumanalysis using STAAD PRO

| Maximum base shear              | 996.42 kN   |
|---------------------------------|-------------|
| Maximum nodal displacement in X | 48.84 mm    |
| direction                       |             |
| Maximum nodal displacement in Y | 3.733 mm    |
| direction                       |             |
| Maximum nodal displacement in Z | 70.214 mm   |
| direction                       |             |
| Maximum moments in X direction  | 104.14 kNm  |
| Maximum moments in Y direction  | 2.009 kNm   |
| Maximum moments in Z direction  | 107.657 kNm |

### 4. Results and discussions

y1 =

### 4.1 Results for 10 sets of input of short columns





y1 =

Volume: 04 Issue: 07 | July -2017

www.irjet.net

p-ISSN: 2395-0072



#### Results for 10 sets of input of simply 4.2 supported beams

0.5962 0.3129 0.3792 0.6414 0.6526 0.6183 0.9586 0.7797 0.6357 0.6342 📣 Neural Network Training (nntraintool) al Net w + w ÷ 10 Data Division: Random (dividerand) Training: Levenberg-Marquardt (trai Performance: Mean Squared Error (mse) Calculations: MEX Progress Epoch: Time: 0 1 iteration: 0:00:02 50 0.0100 1.00e-07 1.00e+10 Performar 0.198 0.478 Gradient: Mu: Validat 0.00100 Checks 0 (plotperform) Performance ng State Tra (plottrainstate) (plotregression) Regression Plot Interval: 1 epochs Performance goal met. Stop Training Cancel



| Pu (N)                                       | 642114   | 912968   | 847200   | 871473   | 379050   | 724123   | 135530  | 512476  | 578928  | 761967  |
|----------------------------------------------|----------|----------|----------|----------|----------|----------|---------|---------|---------|---------|
| B (mm)                                       | 230      | 230      | 230      | 230      | 230      | 230      | 230     | 230     | 230     | 230     |
| D (mm)                                       | 600      | 600      | 600      | 600      | 600      | 600      | 380     | 600     | 600     | 600     |
| Mu                                           | 25650000 | 64645000 | 82397000 | 74193000 | 75315000 | 87331000 | 1397000 | 8716000 | 8726000 | 5895000 |
| Cover                                        | 40       | 40       | 40       | 40       | 40       | 40       | 40      | 40      | 40      | 40      |
| (mm)                                         |          |          |          |          |          |          |         |         |         |         |
| Factored load<br>(N)                         | 642114   | 912968   | 847200   | 871473   | 379050   | 724123   | 135530  | 512476  | 578928  | 761967  |
| Fck (N/mm²)                                  | 25       | 25       | 25       | 25       | 25       | 25       | 25      | 25      | 25      | 25      |
| Fy                                           | 500      | 500      | 500      | 500      | 500      | 500      | 500     | 500     | 500     | 500     |
| $(N/mm^2)$                                   |          |          |          |          |          |          |         |         |         |         |
| Desired value<br>of percentage               | 1.4      | 2.2      | 7        | 2.3      | 1.2      | 1.3      | 0.8     | 0.8     | 0.8     | 2       |
| Predicted value<br>of percentage<br>of steel | 1.4030   | 2.588    | 2.003    | 2.305    | 1.1705   | 1.2893   | 0.7791  | 0.7960  | 0.9755  | 1.93    |
| % error                                      | 0.002    | 0.176    | 0.002    | 0.002    | -0.025   | -0.008   | -0.026  | -0.005  | 0.219   | -0.035  |

Table 7 : Percentage of errors in the design of short column



| Beam No.                              | 252       | 245      | 247      | 246      | 244       | 251       | 253       | 272       | 273           | 255         |  |
|---------------------------------------|-----------|----------|----------|----------|-----------|-----------|-----------|-----------|---------------|-------------|--|
| Cover                                 | 25        | 25       | 25       | 25       | 25        | 25        | 25        | 25        | 25            | 25          |  |
| Depth (mm)                            | 600       | 600      | 600      | 600      | 600       | 600       | 380       | 600       | 600           | 600         |  |
| Span Moment                           | 75400000  | 10300000 | 43500000 | 4300000  | 101000000 | 74800000  | 6260000   | 54500000  | 18600000      | 55400000    |  |
| Left hand<br>support                  | 102000000 | 15600000 | 63200000 | 77200000 | 175000000 | 111000000 | 93300000  | 174000000 | 308000000     | 98400000    |  |
| Right hand<br>support                 | 112000000 | 15700000 | 71400000 | 5830000  | 15200000  | 10400000  | 146000000 | 10300000  | 31000000      | 179000000   |  |
| îck (N∕mm²)                           | 25        | 25       | 25       | 25       | 25        | 25        | 25        | 25        | 25            | 25          |  |
| Fy<br>2017,2000,201                   | 500       | 500      | 500      | 500      | 500       | 500       | 500       | 500       | 500           | 500         |  |
| Percentage of<br>steel at mid<br>span | 0.30      | 0.37     | 0.20     | 0.19     | 0.36      | 0.32      | 0.27      | 0.19      | 0.71          | 0.19        |  |
| Percentage of<br>steel at left        | 0.36      | 0.58     | 0.22     | 0.27     | 0.66      | 0.39      | 0.38      | 0.65      | 1.22          | 0.35        |  |
| Percentage of<br>steel at right       | 0.4       | 0.63     | 0.25     | 0.2      | 0.56      | 0.37      | 0.37      | 0.37      | 1.23          | 0.68        |  |
|                                       |           |          |          |          |           |           |           | ]         | :<br>;;<br>;; | ל<br>י<br>ן |  |

## **Table 8 :** Percentage of errors in the design of simplysupported beam

### 5. Conclusion

Predicted values from the Artificial neural network (ANN) for the design of Reinforced concrete columns, beams are very close to those obtained from conventional design using IS:456-2000. The errors are quite low in the predicted values. Similarly, the maximum values of base shear, nodal displacements and moments from the analysis are compared with those from the predicted values using artificial neural network. The two are very close to one another. Therefore, it can be said such a well trained artificial neural network can be used to perform design.

### References

- 1. K.Kaarthikeyan, Dr.R.Mercy Shanthi, "Optimization of RC columns using artificial neural network", International journal of scientific & engineering research volume 7, issue 4, April 2016.
- 2. Abu-bakr A. A. Aga, Fathelrahman M. Adam, "Design optimization of reinforced concrete frames", open journal of civil engineering, published in March 2015.
- 3. Sara .A. Babiker, Fathelrahman.M . Adam, Abdelrahman E. Mohamed, "Design optimization of reinforced concrete beams using artificial neural network", International journal of engineering inventions volume 1, issue 8, October 2012.
- 4. S.A.Bhalchandra, P.K.Adsul, "Cost optimization of doubly reinforced rectangular beam section", International journal of modern engineering research (IJMER) volume 2, issue 5 Sept- Oct 2012.
- 5. Jagbir Singh, Sonia Chutani, "A survey of modern optimization techniques for reinforced concrete structural design", International journal of engineering science invention research & development volume 2, issue 1, July 2015.
- 6. S.Ramamrutham, "Design of reinforced concrete structures", Dhanpat rai publishing company.
- 7. H.Sudarsana Rao, B.Ramesh Babu, " Optimized column design using genetic algorithm based neural networks" Indian journal of Engineering and Material science, 2006.
- 8. N.Jayaramappa, A.Krishna, B.P.Annpurna and T.Kiran, "Prediction of Base shear for three dimensional RC frame subjected to Lateral load using Artificial Neural Network" Indian Journal of science and technology, 2014.

- 9. Zulkifli Muhammad, "Frame Optimization using Neural Network" International journals on science and technology.
- 10. "Application of Neural network in civil engineering problems" by D.S.Jeng , D.H.Cha and M.Blumenstein, 2003.
- 11. Applications of Artificial Neural Network in Construction Engineering and Management by Megha Jain K.K.Pathab, 2014.
- 12. "Counterpropagation Neural Networks in Structural Engineering" by Hojjat Adeli, 2006.
- 13. Analysis of infilled frames- A study using Neural Network, by N.Muralikrishna and Dr.Gangadharan, 1999.
- 14. "Predicting the life of concrete structures using neural networks" by N.R.Buenfeld, 1998.
- 15. Neural Networks approaches to weight simple truss design problem by Hyeong taek & C.Johnyoon, 1994.
- 16. Rafig.M.Y, Genetic algorithms in optimum design, capacity check and final detailing of reinforced concrete columns, School of civil and engineering University of Plymouth, Plymouth, 1995.
- 17. Senoui.A.B and Abdul-Salam.M.A, Prediction of reinforced concrete beam depth Using Neural Networks, Engineering Journal of the University of Qatar, 1998.
- 18. ACI committee 318, Building code requirements for structural concrete, ACI 318-08, American Concrete Institute, 2008.
- 19. Bureau of Indian standards, IS 456:2000, Code of Practice for Plain and reinforced Concrete, 2000.
- 20. AL-Salloum.Y.A and Siddqi .G.H, Cost optimum design of concrete beams, ACI structural journal, Vol.91, No.6,1994.
- 21. Lee.C. and Ahn.J, "Flexural Design of Reinforced Concrete frames by Genetic Algorithm, Journal for Structural Engineering, 2003.
- 22. Guerra.A. and Kiousis.P.D," Design Optimization of Reinforced Concrete Structures", Computers and Concrete, 2006.
- 23. Yousuf.S.T, Alsaffar. I.S and Ahmed.S.M., "Optimum design of Singly and Doubly Reinforced Concrete

Rectangular Beam Sections : Artificial Neural Networks Application, Iraqi Journal of civil Engineering, 2010.