
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1807

Parallel kNN for Big Data using Adaptive Indexing

Tejal Katore1, Prof. Dr. Suhasini Itkar2

1Post Graduate Scholar, Dept. of Computer Engineering, P.E.S Modern College of Engineering, Pune, India

2Professor, Dept. of Computer Engineering, P.E.S Modern College of Engineering, Pune, India
---***---

Abstract - k Nearest Neighbor is frequently used in
classification methods. kNN algorithm defines the class
membership of the given element. kNN when used in context
with large data, does not perform well. So multiple techniques
were introduced to execute kNN parallely and enhance its
performance. Along with this MapReduce programming model
was used which was suitable for distributed approaches. The
different reference algorithms were given as follows HzknnJ,
HBNJ, RankReduce which compute kNN on MapReduce. Data
preprocessing, Data partitioning and computation are the
three common steps for kNN computation. For all given
solutions only the partitioning technique differs. Adaptive
Indexing is a indexing paradigm where index creation and
reorganization takes place automatically and incrementally. It
was used along with the RankReduce algorithm which helps
knn to exec more efficiently.

Key Words: Hadoop Block Nested Loop kNN (H-BNLJ),
Hadoop z value (H-zkNNJ), k Nearest Neighbor,
MapReduce, Performance Evaluation, RankReduce.

1. INTRODUCTION

k Nearest Neighbor is widely used as a classification or
clustering method in machine learning or data mining[1].
The k-Nearest Neighbor algorithm (k-NN) [2] is considered
one of the ten most significantly data mining algorithms . It is
an lazy learner which do not need absolute training phase.
The method requires that all of the data instances are stored
and unseen cases classified by finding the class labels of the
k closest instances to them[3]. To determine how close two
instances are, several distances can be computed. This
operation as to be performed for all the input examples
against the whole training dataset.

Given R is a point and S is set of reference points, a k
nearest neighbor join is an operation which for each point in
R, discovers the k nearest neighbor in S. The data points are
divided into training set and testing set, also called unlabeled
data. The aim is to find the class label for the new points. For
each unlabeled data, a kNN query on the training set will be
performed to estimate its class membership. This process
can be considered as a kNN join of the testing set with the
training set. The basic idea to compute a kNN join is to
perform a pairwise computation of distance for each element
in R and each element in S . The difficulties mainly lie in the
following two aspect: (1) Data Volume (2)Data
Dimensionality. A lot of work has been dedicated to reduce
the in-memory com-putational complexity [1]. These works

mainly focus on two points: (1) Use indexes to decrease the
number of distances need to be calculated. These indexes can
hardly be scaled on high dimension data. (2) Use projections
to reduce the dimensionality of data. But the maintenance of
the accuracy becomes another issue. Despite these efforts,
there are still significant limitations to process kNN on a
centralized machine when the amount of data increases
[4],[10],[11].

Only distributed and parallel solutions are proved to be
powerful, for large dataset . MapReduce is a flexible and
scalable parallel and distributed programming paradigm
which is specially designed for data-intensive processing.
MapReduce is a parallel programming model that aims at
efficiently processing large-datasets. It consists of:(1)
representing a key-value pair (2)defining map function

(3)defining reduce function. Here we introduce the reference
algorithms that compute kNN over MapReduce. These
algorithms are based on different methods, but follow a
common work-flow which consists three ordered
steps:(1)data pre-processing (2)data partitioning (3) kNN
computation.

2. LITERATURE REVIEW

kNN is based on a distance function that measures the
difference or similarity between two instances. kNN using
centralized approach was not able to perform for large
inputs. So a new approach to execute it parallelly was
developed. There are various existing solutions to perform
the kNN operation in the context of MapReduce are given.

The approach HBNLJ[1] consists of two phases. The data set
is divided into a certain blocks of particular size. The data is
partitioned such a that an element in a partition of R will
have its nearest neighbor in only one partitioned of S. Two
partitioning strategies that enable to separate the datasets
into independent partitions, while preserving locality
information, are proposed. H-zkNNJ [1],[4], which use size
based partitioning strategies, have a very good load balance,
with a very small deviation of the completion time of each
task. In H-zkNNJ, the z -value transformation leads to
information loss. The recall of this algorithm is influenced by
the nature, the dimension and the size of the input data.
More specifically, this algorithm becomes biased if the
distance between initial data is very scattered, and the more
input and M , the number of hash functions in each family.
Since they are dependent on the dataset, experiments are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1808

needed to precisely tune them. In, the authors suggests this
can be achieved with a sample dataset and a theoretical
model. The first important metric to consider is the number
of candidates available in each bucket. Indeed, with some
poorly chosen parameter values, it is possible to have less
than k elements in each bucket, making it impossible to have
enough elements at the end of the computation. HzknnJ uses
Locality Sensitive Hashing[7][8][9].

Rank Reduce [1],[5], with the addition of a third job, can
have the best performance of all, provided that it is started
with the optimal parameters. The most important ones are
W ,the size of each bucket, L , the number of hash families.
Increasing the number of families L greatly improves both
the precision and recall. However, increasing M , the number
of hash functions, decreases the number of collisions,
reducing execution time but also the recall and precision.
Overall, finding the optimal parameters for the Locality
Sensitive Hashing part is complex and has to be done for
every dataset.

Special type of distance [8], [4] is adaptive indexing. It is
specifically addressed kNN queries in high-dimensional
space and has since proven to be one of the most efficient
and state-of-the-art high dimensional indexing techniques
available for exact kNN search. In recent years, iDistance has
been used in a number of applications. In a set of one-
dimensional distance values, each related to one or more
data points, for each partition that are all indexed together in
a single standard B + -tree. The algorithm was motivated by
the ability to use arbitrary reference points to determine the
similarity and dissimilarity between any two data points in a
metric space, allowing single dimensional ranking and
indexing of data points no matter what the dimensionality of
the original space [8].

3. SYSTEM ARCHITECTURE

Processing Steps The following scheme consists of three
basic steps:

1) Pre-processing

i. Remove column names
ii. Move to HDFS
iii. Feature Extraction
iv. Clean Data
v. Divide into training and testing set

2) Partitioning
3) kNN Computation

In iDistance algorithm indexing was added with Rank

Reduce in between. From this the reference was taken and
the implemented system also had indexing with Rank
Reduce but in shuffled order. Firstly the indexing is
performed and then the Rank Reduce is executed.

Fig -1: Architecture Diagram

1.Pre-processing- The data is transformed from its original
form to the data that is beneficiary. Only the required data is
kept and remaining is removed. It further consists of few
steps. A).Remove the column names- The attributes or
column names of the data set are removed. B).Move to HDFS-
The data set is moved over the Hadoop Distributed File
System. C) Feature Extraction- Extracting the selected
features from the given data . D) Clean Data-After selecting
the features the remaining data is discarded.
E) Divide into training and testing set- The data set is divide
into training as well as testing data set. Training data set is
the labelled data which consists of class membership.
Testing data set is the unlabeled data which is to be
processed.

2.Partitioning- While processing data on MapReduce, we
need to divide the data set into independent pieces, called as
partitions. Partitioning is the process of dividing the data
into blocks, regions, buckets, etc. All the algorithms use
different partitioning strategies. Partition is done using 2
different strategies: (1) Distance based Partitioning Strategy

(2) Size based Partitioning Strategy. In distance based
partition the space is divided into disjoint cells while in size
based partition the space is divided into equal size partition.
The algorithms are divided under both strategies.

(3). kNN Computation - The reducers perform the
computation. The mappers divide the data set into numbers
of blocks and the output of these is given to the reducers.
Then the reducers sort the points according to the distances.

A DataSets

The dataset used is named as ”Airline On-Time Statistics
and Delay Causes”. The dataset consists of records of
airlines which include all details related to flights. It is
packaged in yearly chunks from 1987 to 2008. It consists of
29 columns from which 19 columns are selected. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1809

column name ”cancelled tickets” is used as labeled column.
The size of the data set is 12 GB. It consists of 52 billion
records[12].

B. Hardware

1) Memory: 8GB
2) Processor: Intel (R) Pentium (R) CPU B950 @2.10

GHz
3) Hard disk: 64 GB

C. Software

1) Cloudera :Hadoop framework
2) Operating System: CentOs
3) Eclipse 4.2.2 and above
4) vi editor

D. Performance Parameters

The performance of the system is measured using

different parameters among which time is the important
factor. The number of mappers and reducers for each
algorithm are kept same. The value of k is randomly taken.
The time required for each algorithm to execute is in
seconds.

E. Results

Precision

Algorithms k=10 k=15 k=20

Block 0.57 0.56 0.55

Z-value 0.7 0.31 0.2

LSH 0.85 0.73 0.68

Adaptive Indexing 0.9 0.77 0.7

Table 1: Precision value for each algorithm

The comparison between all four algorithms is done. Some

advantages and shortcomings of all algorithms are observed.
HBkNNJ is trivial to implement. It breaks easily but is good
for tiny dataset. H-BNLJ is easy to implement but has a Very
large communication overhead. It performs well for small
and middle datasets. While H-zkNNJ is fast and more precise.
But it requires large disk space and gets slower for high
dimensional dataset. RankReduce performs best among all
algorithms. It is fast and can be used for high dimensional
data. Adaptive indexing yeilds best results among all
algorithms in terms of precision. For different values of k
precision values are taken.

Fig. 2. Performance of algorithm in seconds

Similarly time of execution is reduced in Adaptive

Indexing. Compared to all remaining algorithms Adaptive
Indexing takes less time for all values of k.

Time

Algorithms k=10 k=15 k=20

Block 28.3 25.06 26.32

Z-value 30 30.1 32

LSH 23 25.3 24

Adaptive Indexing 17.2 21 19.8

Table 2:Execution Time for each algorithm in minutes

Fig. 3. Time required for execution in minutes

4. CONCLUSION

In the given paper we implemented the existing solution
for kNN operation in context of Map Reduce[6]. All solutions
follow three main steps that are pre-processing, partitioning,
and computation. Different reference algorithms are
implemented. Depending upon the time and complexity
required Adaptive Indexing is found to be efficient. The
parallel implementation has helped to improve the efficiency
of the kNN. Using indexing over hashing may reduce the time

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1810

required for iterations. And it has contributed in
performance of the algorithm.

5. ACKNOWLEDGEMENT

Working on the topic ”Parallel kNN for Big Data using
Adaptive Indexing” was a source of immense knowledge to
me. I would like to express my sincere gratitude towards
Prof. Suhasini Itkar for her guidance and valuable support
thought out of research work. I acknowledge with a deep
sense of gratitude , the encouragement and inspiration
received from our staff members and friends. Last but not
the least I would like to thank my parents for their love and
support.

6. REFERENCES

[1] Ge Song, Justine Rochas , Lea El Beze and Fabrice Huet
, K Nearest Neighbor Joins for Big Data on MapReduce: a
Theoretical and Experimental Analysis, in Proceedings of
IEEE Transactions on Knowledge and Data Engineering
1041-4347 2016.
[2] T. M. Cover and P. E. Hart, Nearest neighbor pattern
classification, IEEE Transactions on Information Theory, vol.
13, no. 1, pp. 2127.
[3] X. Wu and V. Kumar, Eds.,” The Top Ten Algorithms in
Data Mining”,Chapman Hall/CRC Data Mining and
Knowledge Discovery, 2009.
[4] G. Song, J. Rochas, F. Huet, and F. Magouls, Solutions
for Processing K Nearest Neighbor Joins for Massive Data on
MapReduce, in 23rd Euromicro International Conference on
Parallel, Distributed and Network-based Processing, Turku,
Finland, Mar. 2015.
[5] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, Efficient processing
of k nearest neighbor joins using map reduce, Proc. VLDB
Endow., 2012.
[6] A. Stupar, S. Michel, and R. Schenkel, RankReduce -
processing k- nearest neighbor queries on top of map
reduce, in In LSDS-IR, 2010.
[7] C. Zhang, F. Li, and J. Jestes, Efficient parallel knn joins
for large data in mapreduce, in Extending Database
Technology, 2012.
[8] C. Yu, R. Zhang, Y. Huang, and H. Xiong, High-
dimensional knn joins with incremental updates,
GeoInformatica, 2010.
[9] B. Yao, F. Li, and P. Kumar, K nearest neighbor queries
and knn-joins in large relational databases (almost) for free,
in Data Engineering (ICDE), 2010 IEEE 26th International
Conference on, March 2010, pp. 415.

[10] http://stat-computing.org/dataexpo/2009/the-
data.html.

http://stat-computing.org/dataexpo/2009/the-
http://stat-computing.org/dataexpo/2009/the-

