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Abstract - k Nearest Neighbor is frequently used in 
classification methods. kNN algorithm defines the class 
membership of the given element. kNN when used in context 
with large data, does not perform well. So multiple techniques 
were introduced to execute kNN parallely and enhance its 
performance. Along with this MapReduce programming model 
was used which was suitable for distributed approaches. The 
different reference algorithms were given as follows HzknnJ, 
HBNJ, RankReduce which compute kNN on MapReduce. Data 
preprocessing, Data partitioning and computation are the 
three common steps for kNN computation. For all given 
solutions only the partitioning technique differs. Adaptive 
Indexing is a indexing paradigm where index creation and 
reorganization takes place automatically and incrementally. It 
was used along with the RankReduce algorithm which helps 
knn to exec more efficiently. 
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1.  INTRODUCTION 
 

k Nearest Neighbor is widely used as a classification or 
clustering method in machine learning or data mining[1]. 
The k-Nearest Neighbor algorithm (k-NN) [2] is considered 
one of the ten most significantly data mining algorithms . It is 
an lazy learner which do not need absolute training phase. 
The method requires that all of the data instances are stored 
and unseen cases classified by finding the class labels of the 
k closest instances to them[3]. To determine how close two 
instances are, several distances can be computed. This 
operation as to be performed for all the input examples 
against the whole training dataset. 
 

Given R is a point and S is set of reference points, a k 
nearest neighbor join is an operation which for each point in 
R, discovers the k nearest neighbor in S. The data points are 
divided into training set and testing set, also called unlabeled 
data. The aim is to find the class label for the new points. For 
each unlabeled data, a kNN query on the training set will be 
performed to estimate its class membership. This process 
can be considered as a kNN join of the testing set with the 
training set. The basic idea to compute a kNN join is to 
perform a pairwise computation of distance for each element 
in R and each element in S . The difficulties mainly lie in the 
following two aspect: (1) Data Volume (2)Data 
Dimensionality. A lot of work has been dedicated to reduce 
the in-memory com-putational complexity [1]. These works 

mainly focus on two points: (1) Use indexes to decrease the 
number of distances need to be calculated. These indexes can 
hardly be scaled on high dimension data. (2) Use projections 
to reduce the dimensionality of data. But the maintenance of 
the accuracy becomes another issue. Despite these efforts, 
there are still significant limitations to process kNN on a 
centralized machine when the amount of data increases 
[4],[10],[11]. 
 

Only distributed and parallel solutions are proved to be 
powerful, for large dataset . MapReduce is a flexible and 
scalable parallel and distributed programming paradigm 
which is specially designed for data-intensive processing. 
MapReduce is a parallel programming model that aims at 
efficiently processing large-datasets. It consists of:(1) 
representing a key-value pair (2)defining map function 
 
(3)defining reduce function. Here we introduce the reference 
algorithms that compute kNN over MapReduce. These 
algorithms are based on different methods, but follow a 
common work-flow which consists three ordered 
steps:(1)data pre-processing (2)data partitioning (3) kNN 
computation. 
 

2.  LITERATURE REVIEW 
 

kNN is based on a distance function that measures the 
difference or similarity between two instances. kNN using 
centralized approach was not able to perform for large 
inputs. So a new approach to execute it parallelly was 
developed. There are various existing solutions to perform 
the kNN operation in the context of MapReduce are given. 
 
The approach HBNLJ[1] consists of two phases. The data set 
is divided into a certain blocks of particular size. The data is 
partitioned such a that an element in a partition of R will 
have its nearest neighbor in only one partitioned of S. Two 
partitioning strategies that enable to separate the datasets 
into independent partitions, while preserving locality 
information, are proposed. H-zkNNJ [1],[4], which use size 
based partitioning strategies, have a very good load balance, 
with a very small deviation of the completion time of each 
task. In H-zkNNJ, the z -value transformation leads to 
information loss. The recall of this algorithm is influenced by 
the nature, the dimension and the size of the input data. 
More specifically, this algorithm becomes biased if the 
distance between initial data is very scattered, and the more 
input and M , the number of hash functions in each family. 
Since they are dependent on the dataset, experiments are 
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needed to precisely tune them. In, the authors suggests this 
can be achieved with a sample dataset and a theoretical 
model. The first important metric to consider is the number 
of candidates available in each bucket. Indeed, with some 
poorly chosen parameter values, it is possible to have less 
than k elements in each bucket, making it impossible to have 
enough elements at the end of the computation. HzknnJ uses 
Locality Sensitive Hashing[7][8][9]. 
 

Rank Reduce [1],[5], with the addition of a third job, can 
have the best performance of all, provided that it is started 
with the optimal parameters. The most important ones are 
W ,the size of each bucket, L , the number of hash families. 
Increasing the number of families L greatly improves both 
the precision and recall. However, increasing M , the number 
of hash functions, decreases the number of collisions, 
reducing execution time but also the recall and precision. 
Overall, finding the optimal parameters for the Locality 
Sensitive Hashing part is complex and has to be done for 
every dataset. 
 

Special type of distance [8], [4] is adaptive indexing. It is 
specifically addressed kNN queries in high-dimensional 
space and has since proven to be one of the most efficient 
and state-of-the-art high dimensional indexing techniques 
available for exact kNN search. In recent years, iDistance has 
been used in a number of applications. In a set of one-
dimensional distance values, each related to one or more 
data points, for each partition that are all indexed together in 
a single standard B + -tree. The algorithm was motivated by 
the ability to use arbitrary reference points to determine the 
similarity and dissimilarity between any two data points in a 
metric space, allowing single dimensional ranking and 
indexing of data points no matter what the dimensionality of 
the original space [8]. 
 

3. SYSTEM ARCHITECTURE 
 

Processing Steps The following scheme consists of three 
basic steps: 

 
1) Pre-processing 

i. Remove column names 
ii. Move to HDFS 
iii. Feature Extraction 
iv. Clean Data 
v. Divide into training and testing set 

2) Partitioning 
3) kNN Computation 

 
In iDistance algorithm indexing was added with Rank 

Reduce in between. From this the reference was taken and 
the implemented system also had indexing with Rank 
Reduce but in shuffled order. Firstly the indexing is 
performed and then the Rank Reduce is executed. 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

Fig -1: Architecture Diagram 
 
1.Pre-processing- The data is transformed from its original 
form to the data that is beneficiary. Only the required data is 
kept and remaining is removed. It further consists of few 
steps. A).Remove the column names- The attributes or 
column names of the data set are removed. B).Move to HDFS- 
The data set is moved over the Hadoop Distributed File 
System. C) Feature Extraction- Extracting the selected 
features from the given data . D) Clean Data-After selecting 
the features the remaining data is discarded. 
E) Divide into training and testing set- The data set is divide 
into training as well as testing data set. Training data set is 
the labelled data which consists of class membership. 
Testing data set is the unlabeled data which is to be 
processed. 
 
2.Partitioning- While processing data on MapReduce, we 
need to divide the data set into independent pieces, called as 
partitions. Partitioning is the process of dividing the data 
into blocks, regions, buckets, etc. All the algorithms use 
different partitioning strategies. Partition is done using 2 
different strategies: (1) Distance based Partitioning Strategy 
 
(2) Size based Partitioning Strategy. In distance based 
partition the space is divided into disjoint cells while in size 
based partition the space is divided into equal size partition. 
The algorithms are divided under both strategies. 
 
(3). kNN Computation - The reducers perform the 
computation. The mappers divide the data set into numbers 
of blocks and the output of these is given to the reducers. 
Then the reducers sort the points according to the distances. 
 
A DataSets 
 

The dataset used is named as ”Airline On-Time Statistics 
and Delay Causes”. The dataset consists of records of 
airlines which include all details related to flights. It is 
packaged in yearly chunks from 1987 to 2008. It consists of 
29 columns from which 19 columns are selected. The 
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column name ”cancelled tickets” is used as labeled column. 
The size of the data set is 12 GB. It consists of 52 billion 
records[12]. 

 
B. Hardware 

 
1) Memory: 8GB 
2) Processor: Intel (R) Pentium (R) CPU B950 @2.10 

GHz 
3) Hard disk: 64 GB 

 
C. Software 

1) Cloudera :Hadoop framework 
2) Operating System: CentOs 
3) Eclipse 4.2.2 and above 
4) vi editor 

 
D. Performance Parameters 

 
The performance of the system is measured using 

different parameters among which time is the important 
factor. The number of mappers and reducers for each 
algorithm are kept same. The value of k is randomly taken. 
The time required for each algorithm to execute is in 
seconds. 
 
E. Results 

 
Precision 
 

Algorithms k=10 k=15 k=20 
    

Block 0.57 0.56 0.55 
    

Z-value 0.7 0.31 0.2 
    

LSH 0.85 0.73 0.68 
    

Adaptive Indexing 0.9 0.77 0.7 
    

 
Table 1: Precision value for each algorithm 

 
The comparison between all four algorithms is done. Some 

advantages and shortcomings of all algorithms are observed. 
HBkNNJ is trivial to implement. It breaks easily but is good 
for tiny dataset. H-BNLJ is easy to implement but has a Very 
large communication overhead. It performs well for small 
and middle datasets. While H-zkNNJ is fast and more precise. 
But it requires large disk space and gets slower for high 
dimensional dataset. RankReduce performs best among all 
algorithms. It is fast and can be used for high dimensional 
data. Adaptive indexing yeilds best results among all 
algorithms in terms of precision. For different values of k 
precision values are taken. 
 

 

 
 
 
 

 
 
 
 
 
 
Fig. 2. Performance of algorithm in seconds 

 
Similarly time of execution is reduced in Adaptive 

Indexing. Compared to all remaining algorithms Adaptive 
Indexing takes less time for all values of k. 
 
 

Time 

Algorithms k=10 k=15 k=20 
    

Block 28.3 25.06 26.32 
    

Z-value 30 30.1 32 
    

LSH 23 25.3 24 
    

Adaptive Indexing 17.2 21 19.8 
    

  
Table 2:Execution Time for each algorithm in minutes 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Time required for execution in minutes 
 
4. CONCLUSION 
 

In the given paper we implemented the existing solution 
for kNN operation in context of Map Reduce[6]. All solutions 
follow three main steps that are pre-processing, partitioning, 
and computation. Different reference algorithms are 
implemented. Depending upon the time and complexity 
required Adaptive Indexing is found to be efficient. The 
parallel implementation has helped to improve the efficiency 
of the kNN. Using indexing over hashing may reduce the time 
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required for iterations.  And it  has  contributed  in 
performance of the algorithm. 
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