
          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1664 
 

 An Adjacent Analysis of the Parallel Programming Model Perspective: 
A Survey 

 
Chennupalli Srinivasulu1, Dr. Niraj Upadhyaya2, Dr A.Govardhan3 

 
1 Research Scholar, JNTU Kakinada, AP, India. 

2 Dean and Professor of CSE, JBIT, Hyderabad, TS, India. 
3 Principal, JNTU Hyderabad, TS, India. 

-------------------------------------------------------------------------***--------------------------------------------------------------------- 
Abstract— The growing nature of the demand on the increasing use of parallel computing and parallel programming by 
the application development industry is forcing the researcher community to bring the modern and novel frameworks and 
models in order to increase the performance. A numerous number of research attempts are been carried out by renounced 
researchers in the past. Nevertheless, this domain is been the point of focus for over a decade due to the endless 
possibilities of the scope. The existing research outcomes are always been criticized due to the lack of practically and 
understand ability. Specifically, the ease of use to improve the programming paradigms based on the proposed methods. 
Also, the scope for improvement is always been ignored by the researchers. Thus, this work significantly contributes 
towards the practical importance and implications of the parallel programming models from a newer perspective. The 
major outcome of this work is to compare the benefits and drawbacks of the existing models and furthermore propose the 
improvements in each model. This final outcome of the work is to develop new directions and guidelines for the upcoming 
research attempts, thus providing significant roadmap for the researches.     

 
Keywords— Weighted Comparative Model, PRAM, UMP, BSP, ASM, DPM, TPM 
 
I. INTRODUCTION 

 
The hardware level threads provided by the computer hardware processor helps the developers to realize multiple 

program level threads. The expectations from the high performance computer systems are never ending and soon will 
come to an end. As the capabilities of providing hardware level threads are restricted to the processor clock speed and 
increasing further may cause high power consumption or heating up problem or both. Henceforward, the further 
deployment of the power of instruction level multithreading will reach the pick of the performance. In the other hand, the 
performance improvement demand is never supressed due to the demand of the consumer services. Thus, it is natural to 
understand that the development community of the application development industry soon will face the bottleneck in the 
high performance computing domains. Hence, it is the demand of the modern research to improve the situation. The 
implication of this situation can be only improved by improving the parallel programming models and deal with the multi-
processing from the programming perspective. As implied by the demand of the research, it is necessary to study and find 
the practical feasibilities of implementation and limitations of the available parallel programming models. Further, identify 
the scope for the further research and improvements inspired by such studies.  

 
Every parallel computational techniques or models are built upon two major components such as deployed parallel 

programming framework or model and the associated cost model. The first component, as noted as the parallel 
programming model is the associated parallel execution rules defined as various rules based on mathematical operations, 
task segregation, read and write operations from and on the working memory and finally the message passing technique. 
Also the rule sets contains the restrictions of the system as the conditional applicability of the rules while processing the 
source code. Few of the shared memory depended models are explicit about the memory access rules as well. The memory 
access rules define the strategies of memory access during the source code processing as how the memory locations will 
be accessible by the model. The other non-shared memory models define the memory access strategies implicitly but with 
a strong significance. The second component, as noted as the associated cost model for the framework, defines the cost of 
the operations and demonstrates the method for calculating the cumulative cost of the entire operation.  

 
Another major component from the implementation outlook for the parallel computational frameworks is the 

associated programming language libraries. The programming language libraries are generally the collection of 
application programming interfaces which significantly improves the parallelism in the source code or inversely the 
parallelism can be obtained using these predefined methods.  

 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1665 
 

The fundamental demand behind the evaluation of the parallel programming models or in a bigger viewpoint the 
parallel computational models are the rapid evolution and improvements of the parallel algorithms. The observations 
made on the parallel algorithm implantations are some of the algorithms have demonstrated better performance when 
implemented using specific parallel programming models. The identified but argued reason as stated by many researchers 
are specific parallel programming models are implemented focusing on specific hardware hence proven to be very success 
on those hardware architectures. This is also a notable downside of the existing models and demands significant 
improvements in hardware independence including other factors.  

 
The rest of the work is constructed such as in Section – II the review of the recent improvements in this research 

domain is carried out, in Section – III the parallel programming models are been discussed with the light of implantation 
benchmarks, in Section – IV the comparative discussion are furnished considering the recompenses and hindrances, in 
Section – V the results from various models are discussed and compared and finally in the Section – VI the work delivers 
the conclusion.  

 
II. REVIEW OF LITERATURE  

 
In this section, this work analyses and reviews the previous outcomes by other research attempts. Firstly, the work by 

Bal et al [1] have demonstrated significant study on parallel programming techniques on distributed systems. Also the 
works by Giloi et al. [2] have contributed in understanding the independence factors of parallel programming on parallel 
architecture. The notable recent outcome by Skillicorn et al. [3] in deriving the understanding of practicality of parallel 
programming models also contributed largely on this research domain. Nonetheless, the contribution of the survey by the 
B. M. Maggs et al. [4] is also appreciated by the research community. A decent amount of work is been analysed and 
surveyed by Domenico Talia et al. [5] [6] is also helped in understanding programming language associations with the 
parallel models. Another significant but different directive work by Susanne E. Hambrusch et al. [7] have demonstrated the 
trade-off points behind the instruction level parallelism. The works by Christian Lengauer et al. [8] and Claudia Leopold et 
al. [9] have demonstrated the continuous progressing nature of the parallel programming models.     

 
Inspired by the existing studies, the work takes the surveying task presumptuously in analysing the other relevant 

models in this work.   
 
Firstly, The parallel random access machine model is one of the significant research outcomes in this domain. The 

parallel random access machine developed and demonstrated by Fortune et al [10] is designed for analysing the sequential 
algorithms. The model demonstrates the use of multiple processing units and connected a shared memory unit. The model 
exhibits the use of a globally associated clock for defining the clock cycles for the shared memory and every processor in 
the model. The significant feature of the parallel random access machine is to define the synchronous execution of the 
complete system. The clock cycles controlling every processor in the model is the key factor [11] [Fig – 1].   

 

 
 

Fig. 1Parallel Random Access Machine Model 
 
Secondly, the distributed memory architecture called the unrestricted message passing is generally a set of RAM 

configured in parallel and can run asynchronously. The architecture communicates over the message passing method over 
the communication channel connected with every RAM. The complete configuration is connected with the processor core. 
The functional factor for this model depends on the message routing of the connected network [Fig – 2].  

 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1666 
 

 
 

Fig. 2Message Passing Multicomputer 
 
The associated cost model for unrestricted message passing model is classified into two parts. Firstly, the local 

operations on the same core are considered as performed on the same RAM and secondly, the point to point 
communications are modelled by LogP method model [12].  

 
Thirdly, the Bulk Synchronous Model was first introduced by the Valiant et al. in the year of 1990 [13] and the revised 

model was presented by McColl by the year of 1993 [14]. This model works on the principle of structured dynamic 
message passing computations. The structured model deploys a sequence of supper steps. The sequence of super steps 
involves the computational operations on the locally configured data members. The associated cost model is denoted as 
following:  

 
 _ _ * _ _Cost W Load C Vol N Bandwidth Over Head    

(Eq. 1) 

Where,  
W_Load denotes the number of loads on the local processor  
C_Vol denotes the communication volume on each processors 
N_Bandwidth denotes the network band width  
Over_Head denote the total barrier overhead of the process  
 

Looking at the popularity of this model, an extension by Skillicorn et al. was proposed by the year of 1996 and wise 
widely accepted [15].  

 
Fourthly, another remarkable contribution is the Asynchronous Shared Memory Model and Partitioned Global Address 

Space [Fig – 3].  The shared memory model works with multiple threads of execution asynchronously accessing the shared 
memory. The model is partially identical to the parallel random access machines.  Nevertheless, the models where been 
differentiated significantly based on simplified architecture of the Shared Memory Model by introducing multiple 
consistency models to ensure correct executions [11].  

 

 
 

Fig. 3Asynchronous Shared Memory Model 
 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1667 
 

Another recent advancement in the same direction is a transactional memory deploying the principal of primitive 
parallel computing [16] [17].  

 
Fifth in the count is the Data Parallel Model. The Data Parallel model [Fig – 4] includes the principle of single instruction 

for multiple data. The model involves the workability of the parallel processing of the data, systolic computational process 
and stream processing of the data. The notable proposal by J. Rose et al [18] and the enhancement of the same model 
proposed by Johannes Jendrsczok et al. [19] is adopted by a wide number of researchers and developers.  

 

 
 

Fig. 4  Parallel Data Model 
 
Finally in the list the Task Parallel Model [Fig – 5] is listed. Most of the applications are considered to be a collective set 

of tasks and need to be executed independently in case of a parallel programming approach. Frequently the distinguished 
tasks need to communicate between each other during the execution phase. The group of tasks can be represented by Task 
Graph. Based on the task graph, the tasks are scheduled for ordering the tasks and allocating the tasks to the processing 
units. The task graphs are used majorly in grid computing [11].  Here each node may already representan executable with 
a runtime of hours or days.  

 

 
 

Fig. 5  Task Parallel Model 
 
Henceforth, with the decent understand of the literature focusing on the various parallel computing architectural 

models, this work analyses the parallel programming models in the next section.   
 

III. PARALLEL PROGRAMMING APPROACHES 
 
In this section, the survey work analyses most popular and widely accepted methodologies for designing and developing 

the parallel programmed application. 
 

A. PCAM Approach  
 
The notable contribution by Foster et al. [20] [21] [22] proposed the solution of making any application parallel as 

considering the entry point as a sequential application and partition the tasks inside the algorithm. Further converting the 
independent partitions into tasks and identify the dependencies of the tasks. The dependencies are usually result into the 
communication between the tasks and can be managed in parallel.  

 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1668 
 

B. Incremental Parallelization   
 
The distinguished demonstration by Ken Kennedy et al.[23] have shown that, most of the scientific application are time 

complex and the high time complexity is due to the small code parts with the recursive execution. Most of the 
programming languages provide support to start the execution in the sequential manner and then convert each 
independent component of the source code into parallel execution. Those programming languages allow the recursive 
components such as syntactic loops into parallel execution thus reduce the time complexity.     

 
C. Automation of Parallelization   

 
The use of automation for converting application into parallel approaches is one of the most significant and highly 

demanded methods in the application development industry. The conversion of the parallelism can also be achieved 
manually. Nevertheless the complexity of manageability is tremendously high. Hence, the research by Beniamino di 
Martino et al. [24] is one of the notable guideline for automation of parallelization. The work demonstrates the conversion 
method by separating the source code of the application into two parts as convertible with the hardware acceleration and 
convertible by programming logic. The first category of the source code types can be manipulated by taking the 
advantages of hardware parallelization [25] and the significantly the use of code automation tools over the second 
category can achieve the desired automation.  

 
D. Skeleton Based Parallelization   

 
The skeletonized programming languages provide a numerous ways to convert the application source code into parallel 

programming approaches. The skeletons are generally the independent components of the application and can easily be 
converted into parallel execution. Various skeleton based programming languages as P3L introduced by Bruno Bacci et al. 
[26] and Susanna Pelagatti  et al. [27], SCL introduced by J. Darlington et al. [28] [29], eSkel introduced by Murray Cole et al. 
[30] [31], MuesLi introduced by Herbert Kuchen et al. [32] and finally QUAFF introduced by Joel Falcou et al. [33] provides 
multiple solutions of converting the skeleton into parallel execution.  

 
After understand various parallel programming approaches, this survey work understands the need for further 

research in order to enhance the existing methods. The highly targeted area as identified by this work is the automation of 
parallelization and identify as the area for further concentrations.  

 
IV. COMPARATIVE DISCUSSIONS   

 
This section of the survey work is dedicated for comparative study of the existing practically of the existing models with 

their relevance to the modern research outcomes. 
 

A. PRAM Approach  
 
The benefit of the PRAM model is to obtain support for the parallel computations and also the availability of the 

programming modules are apparently highly friendly to the application developers. The wide acceptance for the PRAM 
model forces the researchers to build and test multiple algorithms [34] for the model and also used for various parallel 
programming tutorials [35]. Nonetheless, the associated cost model is been criticised for being far from the reality. 
However, the enhancements demonstrated by various research attempts are been accepted with notable improvements. 
The cost effectiveness is realized focusing and taking the advantages of hardware acceleration such as NYU Ultra-computer 
[36], SBPRAM introduced by Wolfgang et al. [37, 38, 39], XMT introduced by Vishkin et al. [40] and Eclipse introduced by 
Forsell et al. [41].  

 
B. UMP Approach  

 
The unrestricted message passing or the UMP approach is notable for the benefit of using for concurrent and distributed 

application development. The popularity of this model increased with the introduction of the first parallel-distributed 
memory machine architecture in the year of 1980. This model is also not above the criticism by the researchers. The major 
two setbacks for this model is the message passing approach is not unique for this model and can be achieved in other 
systems as well and secondly, the scheduling of the tasks demands higher understand ability of the system and highly 
complex to maintain.  
 
 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1669 
 

C. BSP Approach  
 
The bulk synchronization parallelization approach or the BSP approach is introduced in the year of 1990 with the ease 

of higher parallelization on the bulk set of the instruction in the applications. The major outcome of the BSP model is to 
correctly predict the execution time for the algorithms thus helps the developers to enhance the algorithm to take the 
advantages of parallelization and reduce the trade off between the time complexity and architectural challenges. The BSP 
model is also used for educating the researchers and practitioners to build the knowledge on parallel algorithm design 
[42].  

 
D. ASM Approach 

The asynchronous shared memory approach or the ASM approach is widely used for the small scale programming 
methods and been proven to improve the performance. The major challenge of this model is maintain the memory with 
sufficient details and the complete memory information has to be exposed to the developers.  

 
E. DPM Approach 

 
The data parallel model approach or the DPM approach was introduced in the year of 1970 and till the year of 1980 was 

been the major focus point for the researchers. Nevertheless, the consistent focus and enhancements on this model made 
DPM one of the essential parts of the advanced outcome from the recent researches. Nonetheless, the data parallel access 
model is also been criticized for being restricted to highly configured hardware and not being available for small 
businesses.   

 
F. TPM Approach 

 
While data flow computing in itself has become a mainstream in programming, it has seriously influenced parallel 

computing and its techniques have found their way into many products. Hardware software co design has gained some 
interest by the integration of recognizable hardware with microprocessors on single chips. Grid computing has gained 
considerable attraction in the last years, mainly driven by the enormous computing power needed to solve grand 
challenge problems in natural and life sciences.    

 
The comparative analysis is been carried out in this work and presented here [Table – 1].  
 

TABLE I: COMPARATIVE ANALYSIS OF THE APPROACHES  
 

Model Introduced In Benefits Challenges Minor Outcomes 
PRAM 1992  In Build Programming 

Modules are highly 
developer friendly  

 Can use the hard ware 
acceleration   

 The associated cost 
model cannot be 
accepted for all 
purposes for various 
practical deficiencies  

 Model for realizing 
learning 
approaches for the 
beginners  

UMP 1980  Highly efficient for 
distributed applications  

 Great hardware control 
for the parallel 
execution  

 The message passing 
can also be achieved 
by other available 
models as well   

 Designing and 
maintaining the 
parallel tasks can be 
very complex  

 Task level 
parallelization can 
be achieved  

BSP 1990  Nearly accurate 
prediction of the 
execution time  

 The accurate 
prediction of the 
execution time is 
mostly hardware 
independent, hence 
the outcome may 
vary based on the 
configuration of the 
systems  

 Can be used to 
enhance  the 
application 
performances step 
by step   



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1670 
 

ASM 1989  Highly effective for 
small scale applications 
and businesses  

 Criticized for not 
been applicable for 
the highly time 
complex algorithms 

 During execution, 
the memory 
configuration need 
to be complexity 
exposed to the 
application    

 Testing high scale 
application before 
migration can be 
beneficial   

DPM 1970 & revised on 
1980 

 Exceedingly efficient for 
the recent digital media 
accessing applications   

 Greatly dependent 
on the hardware and 
demands 
consistently high 
configuration for the 
hardware  

 Digital media 
storage accessing 
can be appreciated 
looking at the 
performances  

TPM 2005  Influences the parallel 
programming theory  

 Applicable on Grid 
based computing  

 Criticized for not 
been applicable for 
the highly time 
complex algorithms 

 Greatly successful 
for grid based 
computing models  

 
With the detailed understanding of the available approaches, in the results section this work analyses the programming 

language supports and grade the applications based on the weighted scores.  
 

V. RESULTS AND DISCUSSIONS   
 
This work proposes an enhanced and highly novel model for comparison of the available models. The programming 

language library support and available data structure supports are the two components for the comparative analysis. The 
programming languages and the data structures are been ranked with relevant weights.  

 
Firstly, the weighted programming language ranks are been framed [Table – 2] [43].  
 

TABLE II: PROGRAMMING LANGUAGES AND WEIGHTS  
 

Model Weights 
Fortran 1 

C 2 
C++ 3 

Vector – C 4 
PGAS 5 
FPGA 6 

 
Secondly, the weighted data structures are been listed [Table – 3].  
 

TABLE III: DATA STRUCTURES AND WEIGHTS  
 

Model Weights 
Array 1 
Matrix 2 
Vector 3 
Tree 4 

 
Further, this model proposes the novel comparative weighted ranks for the approaches. The following formulation 

defines the calculation process.  
 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1671 
 

 
1

1, *n

Rank i iRank

Rank

i
Rank

If Rank Value P Weight P
P

Else P

 
  (Eq. 2) 

 
Where,  
PRANK denotes the rank of the model or the approach based on the programming language support  
Weighti denotes the weight for the programming language  
 

  

 
1

1, *n

Rank i iRank

Rank

i
Rank

If Rank Value D Weight D
D

Else D

 
 (Eq. 3) 

 
Where,  
DRANK denotes the rank of the model or the approach based on the Data Structure support  
Weighti denotes the weight for the data structure   
 

 
Rank Rank

Rank P D   (Eq. 4) 

 
Henceforth the analysis of compatibility for programming languages [Table – 4] and data structure is been presented here 
[Table – 5].  
 

TABLE IV: COMPATIBILITY WITH PROGRAMMING LANGUAGES  
 

Model C C++ Fortran PGAS FPGA Vector – C 
PRAM 1 0 0 0 0 0 
UMP 1 1 1 0 0 0 
BSP 1 0 0 0 0 0 
ASM 1 0 1 1 0 0 
DPM 1 0 0 0 1 0 
TPM 1 0 0 0 0 1 

 
TABLE V: COMPATIBILITY WITH DATA STRUCTURES  

 

Model Matrix  Vector  Tree  Arrays  
PRAM 0 0 0 1 
UMP 1 1 0 1 
BSP 0 0 0 1 
ASM 1 0 0 1 
DPM 0 1 0 1 
TPM 1 1 1 0 

 
The final score of the approaches are been presented here [Table – 6] with the light of Eq. 2 to Eq. 4.  
 

TABLE VI: SCORE MODEL  
 

Model Programming Language 
Score 

Data Structure 
Score 

Total Score 

PRAM 2 1 3 
UMP 6 6 12 
BSP 2 1 3 
ASM 8 3 11 
DPM 7 3 10 
TPM 5 9 11 

 
Thus the ranking of the approaches are considered here [Table – 7].  



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1672 
 

TABLE VII: RANKING MODEL  
 

Model Total Score  Ranking  
UMP 12 1 
ASM 11 2 
TPM 11 3 
DPM 10 4 
PRAM 3 5 
BSP 3 6 

 
 

The results are been analysed graphically here [Fig – 6] [Fig – 7][Fig – 8].  
 

 
 

Fig.6Programming Language Score Analysis 
 

 
 

Fig.7Data Structure Score Analysis 
 

 
 

Fig.8Weighted Score Analysis 
 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1673 
 

 

VI. CONCUSSION   
 
The never degrading nature of the demand for parallelization in application development, the support for the 

programming paradigms and parallel computing models are strongly encouraged by the researchers. This survey work 
analyses the computation models and the programming approaches as existing with a critical view towards finding the 
enhanced research directions towards improvements of the performance and ease of use to the application developers. 
This work analyses PRAM, UMP, BSP, ASM, DPM andTPMcomputational methods. In the course of study, the major 
outcome is the novel ranking method based on the programming language support and available data structure support. 
Based on the obtained weights, the approaches are been ranked. The work finally concludes to elaborate the work on 
automation of parallelization and proposes to work further on this direction in order to save costly man houses and 
provide less time complex applications, which can be used for various purposes like Life Saving Analysis, Financial 
Analysis or Complex Storage structures.   

 
REFERENCES 

 

[1] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming Languages for Distributed Com- puting 
Systems. ACM Computing Surveys, 21(3):261322, September 1989. 

[2] W. K. Giloi. Parallel Programming Models and Their Interdependence with Parallel Architectures. In Proc. 1st Int. Conf. 
Massively Parallel Programming Models. IEEE Computer Society Press, 1993. 

[3] D. B. Skillicorn. Models for Practical Parallel Computation. Int. J. Parallel Programming, 20(2):133158, 1991. 
[4] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of Parallel Computation: a Survey and Synthesis. In 
[5] David B. Skillicorn and Domenico Talia, editors. Programming Languages for Parallel Processing. IEEE Com- puter 

Society Press, 1995. 
[6] David B. Skillicorn and Domenico Talia. Models and Languages for Parallel Computation. ACM Computing Surveys, 

June 1998. 
[7] Susanne E. Hambrusch. Models for Parallel Computation. In Proc. Int. Conf. Parallel Processing, Workshop on 

Challenges for Parallel Processing, 1996. 
[8] Christian Lengauer. A personal, historical perspective of parallel programming for high performance. In Günter 

Hommel, editor, Communication-Based Systems (CBS 2000), pages 111118. Kluwer, 2000. 
[9] Claudia Leopold. Parallel and Distributed Computing. A survey of models, paradigms and approaches. Wiley, New 

York, 2000. 
[10] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. 10th Annual ACM Symp. Theory of 

Computing, pages 114118, 1978. 
[11] Sarita V. Adve and KouroshGharachorloo. Shared Memory Consistency Models: a Tutorial. IEEE Comput., 29(12):6676, 

1996. 
[12] David E. Culler, Richard M. Karp, David A. Patterson, AbhijitSahay, Klaus E. Schauser, Eunice Santos, Ramesh 

Subramonian, and Thorsten von Eicken. LogP: Towards a realistic model of parallel computation. In Principles & 
Practice of Parallel Programming, pages 112, 1993. 

[13] Leslie G. Valiant. A Bridging Model for Parallel Computation. Comm. ACM, 33(8):103111, August 1990. 
[14] W. F. McColl. General Purpose Parallel Computing. In A. M. Gibbons and P. Spirakis, editors, Lectures on Parallel 

Computation. Proc. 1991 ALCOM Spring School on Parallel Computation, pages 337 - 391. Cambridge University Press, 
1993. 

[15] D. B. Skillicorn. miniBSP: a BSP Language and Transformation System. Technical report, Dept. of Computing and 
Information Sciences, Queens's University, Kingston, Canada, Oct. 22 1996. 
http://www.qucis.queensu.ca/home/skill/mini.ps.  

[16] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and BratinSaha. Unlocking concurrency: multicore programming with 
transactional memory. ACM Queue, (Dec. 2006/Jan. 2007), 2006. 

[17] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for lock-free data structures. In 
Proc. Int. Symp. Computer Architecture, 1993. 

[18] J. Rose and G. Steele. C*: an Extended C Language for Data Parallel Programming. Technical Report PL87-5, Thinking 
Machines Inc., Cambridge, MA, 1987. 

[19] Johannes Jendrsczok, Rolf Homann, Patrick Ediger, and Jörg Keller. Implementing APL-like data parallel functions on 
a GCA machine. In Proc. 21st Workshop Parallel Algorithms and Computing Systems (PARS), 2007. 

[20] Ian Foster. Designing and Building Parallel Programs. Addison Wesley, 1995. 
[21] Ian Foster. Globus toolkit version 4: Software for service-oriented systems. In Proc. IFIPInt.l Conf. Network and 

Parallel Computing, LNCS 3779, pages 213. Springer, 2006. 
[22] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable virtual organizations. 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1674 
 

[23] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High Performance Fortran: an historical object 
lesson. In Proc. Int. Sympos 

[24] Beniamino di Martino and Christoph W. Keÿler. Two program comprehension tools for automatic parallelization. 
IEEE Concurr., 8(1), Spring 2000. 

[25] Fredrik Warg. Techniques to reduce thread-level speculation overhead. PhD thesis, Dept. of Computer Science and 
Engineering, Chalmers university of technology, Gothenburg (Sweden), 2006. 

[26] Bruno Bacci, Marco Danelutto, Salvatore Orlando, Susanna Pelagatti, and Marco Vanneschi. P3L: A structured high 
level programming language and its structured support. Concurrency  Pract. Exp., 7(3):225255, 1995. 

[27] Susanna Pelagatti. Structured Development of Parallel Programs. Taylor&Francis, 1998. 
[28] J. Darlington, A. J. Field, P. G. Harrison, P. H. B. Kelly, D. W. N. Sharp, and Q. Wu. Parallel Programming Using Skeleton 

Functions. In Proc. Conf. Parallel Architectures and Languages Europe, pages 146160. Springer LNCS 694, 1993. 
[29] J. Darlington, Y. Guo, H. W. To, and J. Yang. Parallel skeletons for structured composition. In Proc. 5th ACM SIGPLAN 

Symp. Principles and Practice of Parallel Programming. ACM Press, July 1995. SIGPLAN Notices 30(8), pp. 1928. 
[30] Murray Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel programming. Parallel 

Computing, 30(3):389406, 2004. 
[31] Murray I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman and MIT Press, 1989. 
[32] Herbert Kuchen. A skeleton library. In Proc. Euro-Par'02, pages 620629, 2002. 
[33] Joel Falcou and Jocelyn Serot. Formal semantics applied to the implementation of a skeleton-based parallel 

programming library. In Proc. ParCo-2007. IOS press, 2008. 
[34] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992. 
[35] Christoph W. Kessler. A practical access to the theory of parallel algorithms. In Proc. ACM SIGCSE'04 Symposium on 

Computer Science Education, March 2004. 
[36] Allan Gottlieb. An overview of the NYU ultracomputer project. In J.J. Dongarra, editor, Experimental Parallel 

Computing Architectures, pages 2595. Elsevier Science Publishers, 1987. 
[37] FerriAbolhassan, ReinhardDrefenstedt, Jörg Keller, Wolfgang J. Paul, and Dieter Scheerer. On the physical design of 

PRAMs. Computer J., 36(8):756762, December 1993. 
[38] Jörg Keller, Christoph Kessler, and JesperTrä. Practical PRAM Programming. Wiley, New York, 2001. 
[39] Wolfgang J. Paul, Peter Bach, Michael Bosch, Jörg Fischer, CédricLichtenau, and JochenRöhrig. Real PRAM 

programming. In Proc. Int. Euro-Par Conf.'02, August 2002. 
[40] Xingzhi Wen and Uzi Vishkin. Pram-on-chip: rst commitment to silicon. In SPAA '07: Proceedings of the nineteenth 

annual ACM symposium on Parallel algorithms and architectures, pages 301302, New York, NY, USA, 2007. ACM. 
[41] MarttiForsell. A scalable high-performance computing solution for networks on chips. IEEE Micro, pages 4655, 

September 2002. 
[42] R. Bisseling. Parallel Scientic Computation A Structured Approach using BSP and MPI. Oxford University Press, 2004. 
[43] Classification of the principal programming paradigms. 

https://www.info.ucl.ac.be/~pvr/paradigmsDIAGRAMeng108.pdf 
 

ABOUT THE AUTHORS 
 

Mr.Ch.Srinivasulu has obtained his B.Tech Degree from SV University,and M.Tech (CSE) from JNT   
University, Hyderabad. He is having nearly 20 years experience in Industry as well as a faculty of Computer 
Science and Information Technology departments. He is pursuing his PhD from JNTU kakinada. His area of 
research includes Computer Architecture, Parallel Computing, Software Engineering.Presently he is working 
as Associate Professor in JB Institute of Engineering Technology,Hyderabad. 
. 

Dr. Niraj Upadhyaya, Ph.D., is an eminent scholar, professor in the CSE Department and Dean of       
Academics at J.B. Institute of Engineering & Technology, Hyderabad. He has his name established in the field 
of "Parallel Computing" and has many articles, papers and journals to his name. He had his Ph.D. from the 
University of West of England, Bristol, UK with the topic of "Memory Management of Cluster HPCs". He has 
more than 20 years of experience . 
 
Dr. A.Govardhan is presently a Professor of Computer Science & Engineering at JNTUH  Jawaharlal Nehru 
Technological University Hyderabad (JNTUH), India. He did his B.E.(CSE) from Osmania University College of 
Engineering, Hyderabad in 1992, M.Tech from Jawaharlal Nehru University(JNU), New Delhi in 1994 and 
Ph.D from Jawaharlal Nehru Technological University, Hyderabad in 2003. His area of interest Databases, 
Data Warehousing & Mining, Information Retrieval,Computer Networks,ImageProcessing and Object 
Oriented Technologies. 

https://www.info.ucl.ac.be/~pvr/paradigmsDIAGRAMeng108.pdf

