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Abstract - The design and implementation of digital 
electronic circuits is to undergo proper testing so that bugs 
can be eliminated from the development environment itself. 
Since digital electronic circuits and computer programs are 
similar in nature, methods adopted in program verification 
can be effectively used for the verification of digital systems 
also. Formal modelling is an important method in any kind 
of verification and in this paper, we present a novel 
approach to formally modeling a digital system. We prove 
that our approach can be used for modeling digital systems 
with any number of gates as the resulting model will have a 
finite number of states only. We use LTL to specify 
properties of digital systems and we use a symbolic model 
checker to verify those properties. 

Key Words:  Digital electronic systems, program 
verification for digital systems, LTL for specifying 
properties of digital systems, formal modelling, using 
SAL for verification 
 
1. INTRODUCTION 

Proving correctness of programs have always been a hot 
topic in the realm of computer science. The software 
systems always stressed the importance of testing from 
the very beginning and as a result, software development 
life cycle (SDLC) always had an important component in 
testing [1]. A software does not turn out to be usable 
unless it passes the test cases prepared by the testing 
team. Modern day SDLC systems present large number of 
testing methods to avoid any minor defect in the software.  

Although the present black box testing is sufficient for a 
large number of software applications as a passing 
criterion, there are certain mission critical applications 
where the present black box testing is not enough. On June 
4, 1996, the unmanned rocket Ariane 5 (from European 
Space Agency) exploded just after 40 seconds from its 
launch. On detailed evaluation later, it was found out that 
a 64-bit integer relating to its velocity component was 
converted to a 16-bit integer [2]. The system had passed 
all the black box test cases, though it is not easy for that 
kind of testing to reveal the bug.  

We need a better system which can figure out the bugs 
and thereby verifying the correctness of the program. 
Since it is not even possible to run and verify certain 
systems, it would be really beneficial if there is a testing / 
verification. system which predicts errors by static 
analysis of the code / algorithm. Moreover, if the entire 

software system can be considered as a mathematical 
model, verification of certain properties would be really 
easy. That is the whole idea behind program verification.  

A program may have a large number of components like 
variables, semaphores, locking mechanisms etc. and it is 
really hard to determine and verify all the features of all 
the components. Hence we limit the components and 
features. As an example, consider the following program 
segment.  

for (;;) {  

      x = 0; 
      ..... 
      x = 1; 
}  

Here we would like to verify the properties of x only. 
Hence we convert the program as a finite state machine 
with two states, i.e., x=0 and x=1, as shown in figure1.  

 
Figure 1.  

Transition system for the states of the variable x.  

The start and final states of the automaton are not shown 
in figure 1 as the variable x does not feature them. Hence it 
is rather a transition system than a deterministic finite 
automaton. However, the transition system itself is 
powerful enough to prove certain properties of the 
program. For example, suppose we want to verify that the 
value of x is always either 0 or 1. It is very easy for a model 
checker to do the above, given the above verification 
condition is  
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The example given above may seem slightly naive as there 
is no real bug in the program. However, in real world 
complex programs, even after multiple peer reviews, it is 
common that there are semantic errors which go 
undetected. The development and production 
environments can be really different and it is very hard to 
reproduce bugs in development environments which 
appear in production arena. A black box tester who does 
not know much about the program can do little in above 
kind of bugs. Also, it is not easy to reproduce the entire 
production settings in the development site. That is why 
formalization comes as a handy tool to find out potential 
bugs at the development site itself, which otherwise would 
have been hazardous to the system. As an example, 
consider the following program segment.  

    byte temperature = 0; 
    bool fan_on = false; 
..........  

    if (temperature > 500) 
        fan_on = true; 
..........  

The fan will never be on as the maximum value 
temperature can hold is 255. This is a potentially 
undetected bug if the development environment does not 
have provision to check temperature beyond 255.  

Just like programs, design of every digital electronic 
system goes through rigorous phases of testing. However, 
the basic black box testing is not enough in this case also. 
In this work, we present a few ideas on formalizing digital 
systems. We then present a novel approach to verifying 
certain properties of digital electronic systems, using 
linear temporal logic (LTL). This paper is divided into 
following sections. Section II gives a brief idea about the 
basics of LTL. Section III puts forward how digital systems 
can be truthfully modelled and how LTL can be used for 
proving certain properties of those systems. Section IV 
shows the experimental work we have done and section V 
proposes the conclusions and future work.  

2. THE LINEAR TEMPORAL LOGIC (LTL)  

Logic is an integral part of formal verification. Temporal 
logic extends propositional or predicate logic by temporal 
modalities [3]. LTL implements a transition system where 
each state holds a proposition. Figure 2 depicts the 
transition system where a1 is the proposition that holds in 
the first state. A LTL formula φ can be expressed to be  

φ = true | a | φ
1
∧φ

2 
| φ

1
∨φ

2 
| ¬φ | Oφ | φ

1
Uφ

2 
|   �φ | 

♦φ  

where a ∈ AP, the atomic proposition.  

 
Figure 2. 

The various operators and symbols in LTL are  

 • Next operator, O - shows a holds in the second 
state from beginning. Figure 3 shows Oa

2
.  

 

•   Until operator, U - shows the first proposition continues 
to hold in all states until the second proposition 
is met. Figure 4 shows a U b.  

•   Eventually operator, ♦ - shows that the operand is true 
eventually in the transition system.  
♦φ = true U φ  
Figure 4 shows ♦b.  

•   Always operator, � - as the name indicates, the operand  
holds in all states of the transition system. 
Figure 5 shows � a.  

•   And operator, ∧ - used to connect two propositions 
using logical AND.  
 

•   Or operator, ∨ - used to connect two propositions using 
logical OR.  
 

•   Not operator, ¬ - used to assert negation of the 
proposition holds.  

 

Figure 3.  A transition system for the O operator. 

 

Figure 4.  A transition system for the U operator.  
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Figure 5. A transition system for the � operator. 

These formulas are very powerful and almost every logical 
feature of the model can be expressed using LTL. As an 
example, consider an emailing system where the property 
is that whenever we try to send an email, the next state 
should be that it is delivered. It is expressed as a simple 
LTL formula 

(try → O delivered) 

Later, if we want to change the property that the emailing 
system should continue to try sending the email until it is 
delivered, we change the LTL formula as 

 (try → try U delivered) 

Finally, if the desired property of the system is that 
whenever we try to send an email, it should be delivered 
some time in future, the corresponding LTL formula can 
be written as 

(try → ♦ delivered) 

We have two more derived semantics for LTL. They are 

• infinitely often, � ♦φ and 

•  eventually forever, ♦ � φ 

3. LTL FOR DIGITAL ELECTRONIC CIRCUIT 
VERIFICATION 

Digital electronic circuits are mostly made of logic gates 
and the data they deal with are normally logical zeros and 
ones. This makes them an ideal candidate for logic 
verification. Digital electronic circuits can be quite 
complex and debugging and verifying the circuit is not an 
easy task. It would be really helpful if they are modelled in 
a suitable format so that automated verification of certain 
properties can be done. 

LTL is an ideal tool for verification of properties of a 
digital electronic circuit. An electronic circuit, 
combinational or sequential, can be considered to produce 
a finite set of states where each state is an output of a 
combination of logical operations on the inputs. We can 
create an exploded model of the circuit by taking each 
logic gate in the circuit and adding a state corresponding 
to every combination of the possible inputs to that gate. 

(For a digital circuit, the possible values of an input are 0 
and 1only). 

As an example, consider a simple circuit given in figure 6. 
The possible combinations of inputs for the pair (x1, x2) 
are (0, 0), (0, 1), (1, 0) and (1, 1). Hence the corresponding 
transition system model will have five states, as in figure 7. 

Lemma 1. The number of states in a transition system 
model of a digital electronic circuit remains finite. 

                                  
 
Figure 6.  A simple circuit having only one logic gate.  

 

Figure 7. Transition system for the circuit in figure 6. 

Proof: We prove the claim using the method of 
mathematical induction on the number of logic gates in the 
system, by adding gates progressively one by one. If there 
is only one gate with k inputs, the maximum number of 

states in the transition system will be 2

k

. For a circuit with 
m gates, let the no. of states in the transition be n. The 
maximum number of outputs possible in the above circuit 
is m. If we add an extra gate to the above circuit ( Total 
number of gates = m + 1) with k external inputs to the new 
gate, the maximum number of extra states needed in the 
transition system to accommodate the new gate will be 

2

m+k

Since the total number of gates in any electronic 
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circuit is finite, the total number of states needed in the 
transition system also remains finite.  

3.1 Using LTL for verification  

Debugging a complex digital circuit is never easy. The 
debugger has to go through output of each state 
correspond- ing to each combination of inputs and 
obviously this is a tedious and error prone process. 
However, once we have a model of the circuit, each state 
corresponds to an output for an input combination. 
Verifying whether a particular output is obtained is simply 
a graph reachability [4] problem through a specific path. 
There may be other aspects of verification also. For 
example, under certain conditions, the output should 
never be a particular value. These properties can be easily 
expressed in LTL and then can be given as an input to a 
model checker. The model checker can easily verify 
whether the LTL property is satisfied by the system.  

3.2 SAL - A symbolic model checker  

SAL (Symbolic Analysis Laboratory) is a framework used 
for model checking, program analysis and theorem 
proving of transition systems [5]. The language of SAL 
allows the users to specify the transition systems. Just like 
many other model checking frameworks, SAL input 
language allows the transition system to be specified in 
terms of initialization and transition commands. It has a 
binary decision tree (BDD) based symbolic model checker 
for finite state systems. Most importantly, LTL properties 
can be specified using the language of SAL which the 
symbolic model checker can easily verify. SAL generates a 
counter example sequence of steps if it is not able to verify 
a property.  

We use SAL for model checking of digital electronic 
circuits.  

4. EXPERIMENTS AND RESULTS  

The modeling method suggested in section III has an 
exponential complexity. The state space grows really big 
as the number of gates and inputs increase. As a result, the 
number of lines of code for specifying the transition 
system in SAL is considerably high for an average 
electronic circuit that uses tens of gates. This results in 
prolonged execution time for the model checker and a 
considerable use of system resources.  

However, our first aim is to verify the result for all 
possible combinations of inputs and the result is obtained 
by performing a series of logical operations on the inputs. 
SAL allows to specify these operations directly in the 
transitions. For example, consider the circuit shown in the 
figure 8. The circuit has three gates and one input, viz. x. 

The final output is y
2 

and the intermediate outputs are y
0 

and y
1

. They can be represented as  

y
0 

=xANDy
2

,y
1 

=NOT(xANDy
1

), y
2 

=y
0 

ANDy
1 

 

 
Figure 8.  A circuit using three gates and one input. 

4.1 Modeling using SAL  

As we are interested in the output only, we need only two 
variables. The type of the variable is boolean.  

    input x: boolean 
    output y2: boolean 
The initial states of the above variables are indeterminate. 
Hence there is no initialisation section for our model.  

Transition is the most important stage that helps us to 
truthfully model the circuit. Since SAL allows the logic 
operations that are performed by gates, we can directly 
model them as follows.  

transition  

[  

          true --> y2’ = (x AND y2) AND 
                             (NOT(x AND y2)); 
[]  else -->   % Do nothing 
 
] 
 
4.2 Specifying properties using LTL  

Once we model the entire circuit, we can specify the 
properties as LTL. Here we verify the basic property that 
once the input is 0, the output continues to be 0 forever. 
This can be represented in LTL as  

¬x → ♦ ¬y
2 

The corresponding SAL statement is  

low_output: THEOREM circuit |- 

              ((x = false) => (F(G(y2 = false)))); 
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It specifies that in the module circuit, the LTL property 
low_output holds. C. Results  

We use the symbolic model checker of SAL to verify the 
LTL assertions. For the above sample, it verified the 
assertion quickly.  

We validated the above method of verification using 
sample circuits like flip-flops and counters and all the 
time, the results were satisfactory.  

5. CONCLUSIONS AND FUTURE WORK  

We have presented an easy way to convert a digital 
electronic circuit to a transition system and then to verify 
their properties. The method uses the BDD based symbolic 
model checker of SAL. The method can verify almost any 
feature expressable in LTL.  

As the future work, we would like to create a system that 
can automatically convert digital systems to the transition 
system based model. We need to identify methods to 
reduce  

the number of states in the system. We would also like to 
extend the work to some complex electronic circuits and 
see if there is any upper bound on the number of gates and 
inputs.  
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