
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1469

 A General Framework for Electronic Circuit Verification

Afsal K

Assistant Professor, Dept. of Computer Science,
Malabar College of Advanced Studies, Kerala, India

--***---
Abstract - The design and implementation of digital
electronic circuits is to undergo proper testing so that bugs
can be eliminated from the development environment itself.
Since digital electronic circuits and computer programs are
similar in nature, methods adopted in program verification
can be effectively used for the verification of digital systems
also. Formal modelling is an important method in any kind
of verification and in this paper, we present a novel
approach to formally modeling a digital system. We prove
that our approach can be used for modeling digital systems
with any number of gates as the resulting model will have a
finite number of states only. We use LTL to specify
properties of digital systems and we use a symbolic model
checker to verify those properties.

Key Words: Digital electronic systems, program
verification for digital systems, LTL for specifying
properties of digital systems, formal modelling, using
SAL for verification

1. INTRODUCTION

Proving correctness of programs have always been a hot
topic in the realm of computer science. The software
systems always stressed the importance of testing from
the very beginning and as a result, software development
life cycle (SDLC) always had an important component in
testing [1]. A software does not turn out to be usable
unless it passes the test cases prepared by the testing
team. Modern day SDLC systems present large number of
testing methods to avoid any minor defect in the software.

Although the present black box testing is sufficient for a
large number of software applications as a passing
criterion, there are certain mission critical applications
where the present black box testing is not enough. On June
4, 1996, the unmanned rocket Ariane 5 (from European
Space Agency) exploded just after 40 seconds from its
launch. On detailed evaluation later, it was found out that
a 64-bit integer relating to its velocity component was
converted to a 16-bit integer [2]. The system had passed
all the black box test cases, though it is not easy for that
kind of testing to reveal the bug.

We need a better system which can figure out the bugs
and thereby verifying the correctness of the program.
Since it is not even possible to run and verify certain
systems, it would be really beneficial if there is a testing /
verification. system which predicts errors by static
analysis of the code / algorithm. Moreover, if the entire

software system can be considered as a mathematical
model, verification of certain properties would be really
easy. That is the whole idea behind program verification.

A program may have a large number of components like
variables, semaphores, locking mechanisms etc. and it is
really hard to determine and verify all the features of all
the components. Hence we limit the components and
features. As an example, consider the following program
segment.

for (;;) {

 x = 0;

 x = 1;
}

Here we would like to verify the properties of x only.
Hence we convert the program as a finite state machine
with two states, i.e., x=0 and x=1, as shown in figure1.

Figure 1.

Transition system for the states of the variable x.

The start and final states of the automaton are not shown
in figure 1 as the variable x does not feature them. Hence it
is rather a transition system than a deterministic finite
automaton. However, the transition system itself is
powerful enough to prove certain properties of the
program. For example, suppose we want to verify that the
value of x is always either 0 or 1. It is very easy for a model
checker to do the above, given the above verification
condition is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1470

The example given above may seem slightly naive as there
is no real bug in the program. However, in real world
complex programs, even after multiple peer reviews, it is
common that there are semantic errors which go
undetected. The development and production
environments can be really different and it is very hard to
reproduce bugs in development environments which
appear in production arena. A black box tester who does
not know much about the program can do little in above
kind of bugs. Also, it is not easy to reproduce the entire
production settings in the development site. That is why
formalization comes as a handy tool to find out potential
bugs at the development site itself, which otherwise would
have been hazardous to the system. As an example,
consider the following program segment.

 byte temperature = 0;
 bool fan_on = false;
..........

 if (temperature > 500)
 fan_on = true;
..........

The fan will never be on as the maximum value
temperature can hold is 255. This is a potentially
undetected bug if the development environment does not
have provision to check temperature beyond 255.

Just like programs, design of every digital electronic
system goes through rigorous phases of testing. However,
the basic black box testing is not enough in this case also.
In this work, we present a few ideas on formalizing digital
systems. We then present a novel approach to verifying
certain properties of digital electronic systems, using
linear temporal logic (LTL). This paper is divided into
following sections. Section II gives a brief idea about the
basics of LTL. Section III puts forward how digital systems
can be truthfully modelled and how LTL can be used for
proving certain properties of those systems. Section IV
shows the experimental work we have done and section V
proposes the conclusions and future work.

2. THE LINEAR TEMPORAL LOGIC (LTL)

Logic is an integral part of formal verification. Temporal
logic extends propositional or predicate logic by temporal
modalities [3]. LTL implements a transition system where
each state holds a proposition. Figure 2 depicts the
transition system where a1 is the proposition that holds in
the first state. A LTL formula φ can be expressed to be

φ = true | a | φ
1
∧φ

2
| φ

1
∨φ

2
| ¬φ | Oφ | φ

1
Uφ

2
| �φ |

♦φ

where a ∈ AP, the atomic proposition.

Figure 2.

The various operators and symbols in LTL are

 • Next operator, O - shows a holds in the second
state from beginning. Figure 3 shows Oa

2
.

• Until operator, U - shows the first proposition continues
to hold in all states until the second proposition
is met. Figure 4 shows a U b.

• Eventually operator, ♦ - shows that the operand is true
eventually in the transition system.
♦φ = true U φ
Figure 4 shows ♦b.

• Always operator, � - as the name indicates, the operand
holds in all states of the transition system.
Figure 5 shows � a.

• And operator, ∧ - used to connect two propositions
using logical AND.

• Or operator, ∨ - used to connect two propositions using
logical OR.

• Not operator, ¬ - used to assert negation of the
proposition holds.

Figure 3. A transition system for the O operator.

Figure 4. A transition system for the U operator.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1471

Figure 5. A transition system for the � operator.

These formulas are very powerful and almost every logical
feature of the model can be expressed using LTL. As an
example, consider an emailing system where the property
is that whenever we try to send an email, the next state
should be that it is delivered. It is expressed as a simple
LTL formula

(try → O delivered)

Later, if we want to change the property that the emailing
system should continue to try sending the email until it is
delivered, we change the LTL formula as

 (try → try U delivered)

Finally, if the desired property of the system is that
whenever we try to send an email, it should be delivered
some time in future, the corresponding LTL formula can
be written as

(try → ♦ delivered)

We have two more derived semantics for LTL. They are

• infinitely often, � ♦φ and

• eventually forever, ♦ � φ

3. LTL FOR DIGITAL ELECTRONIC CIRCUIT
VERIFICATION

Digital electronic circuits are mostly made of logic gates
and the data they deal with are normally logical zeros and
ones. This makes them an ideal candidate for logic
verification. Digital electronic circuits can be quite
complex and debugging and verifying the circuit is not an
easy task. It would be really helpful if they are modelled in
a suitable format so that automated verification of certain
properties can be done.

LTL is an ideal tool for verification of properties of a
digital electronic circuit. An electronic circuit,
combinational or sequential, can be considered to produce
a finite set of states where each state is an output of a
combination of logical operations on the inputs. We can
create an exploded model of the circuit by taking each
logic gate in the circuit and adding a state corresponding
to every combination of the possible inputs to that gate.

(For a digital circuit, the possible values of an input are 0
and 1only).

As an example, consider a simple circuit given in figure 6.
The possible combinations of inputs for the pair (x1, x2)
are (0, 0), (0, 1), (1, 0) and (1, 1). Hence the corresponding
transition system model will have five states, as in figure 7.

Lemma 1. The number of states in a transition system
model of a digital electronic circuit remains finite.

Figure 6. A simple circuit having only one logic gate.

Figure 7. Transition system for the circuit in figure 6.

Proof: We prove the claim using the method of
mathematical induction on the number of logic gates in the
system, by adding gates progressively one by one. If there
is only one gate with k inputs, the maximum number of

states in the transition system will be 2

k

. For a circuit with
m gates, let the no. of states in the transition be n. The
maximum number of outputs possible in the above circuit
is m. If we add an extra gate to the above circuit (Total
number of gates = m + 1) with k external inputs to the new
gate, the maximum number of extra states needed in the
transition system to accommodate the new gate will be

2

m+k

Since the total number of gates in any electronic

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1472

circuit is finite, the total number of states needed in the
transition system also remains finite.

3.1 Using LTL for verification

Debugging a complex digital circuit is never easy. The
debugger has to go through output of each state
correspond- ing to each combination of inputs and
obviously this is a tedious and error prone process.
However, once we have a model of the circuit, each state
corresponds to an output for an input combination.
Verifying whether a particular output is obtained is simply
a graph reachability [4] problem through a specific path.
There may be other aspects of verification also. For
example, under certain conditions, the output should
never be a particular value. These properties can be easily
expressed in LTL and then can be given as an input to a
model checker. The model checker can easily verify
whether the LTL property is satisfied by the system.

3.2 SAL - A symbolic model checker

SAL (Symbolic Analysis Laboratory) is a framework used
for model checking, program analysis and theorem
proving of transition systems [5]. The language of SAL
allows the users to specify the transition systems. Just like
many other model checking frameworks, SAL input
language allows the transition system to be specified in
terms of initialization and transition commands. It has a
binary decision tree (BDD) based symbolic model checker
for finite state systems. Most importantly, LTL properties
can be specified using the language of SAL which the
symbolic model checker can easily verify. SAL generates a
counter example sequence of steps if it is not able to verify
a property.

We use SAL for model checking of digital electronic
circuits.

4. EXPERIMENTS AND RESULTS

The modeling method suggested in section III has an
exponential complexity. The state space grows really big
as the number of gates and inputs increase. As a result, the
number of lines of code for specifying the transition
system in SAL is considerably high for an average
electronic circuit that uses tens of gates. This results in
prolonged execution time for the model checker and a
considerable use of system resources.

However, our first aim is to verify the result for all
possible combinations of inputs and the result is obtained
by performing a series of logical operations on the inputs.
SAL allows to specify these operations directly in the
transitions. For example, consider the circuit shown in the
figure 8. The circuit has three gates and one input, viz. x.

The final output is y
2

and the intermediate outputs are y
0

and y
1

. They can be represented as

y
0

=xANDy
2

,y
1

=NOT(xANDy
1

), y
2

=y
0

ANDy
1

Figure 8. A circuit using three gates and one input.

4.1 Modeling using SAL

As we are interested in the output only, we need only two
variables. The type of the variable is boolean.

 input x: boolean
 output y2: boolean
The initial states of the above variables are indeterminate.
Hence there is no initialisation section for our model.

Transition is the most important stage that helps us to
truthfully model the circuit. Since SAL allows the logic
operations that are performed by gates, we can directly
model them as follows.

transition

[

 true --> y2’ = (x AND y2) AND
 (NOT(x AND y2));
[] else --> % Do nothing

]

4.2 Specifying properties using LTL

Once we model the entire circuit, we can specify the
properties as LTL. Here we verify the basic property that
once the input is 0, the output continues to be 0 forever.
This can be represented in LTL as

¬x → ♦ ¬y
2

The corresponding SAL statement is

low_output: THEOREM circuit |-

 ((x = false) => (F(G(y2 = false))));

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1473

It specifies that in the module circuit, the LTL property
low_output holds. C. Results

We use the symbolic model checker of SAL to verify the
LTL assertions. For the above sample, it verified the
assertion quickly.

We validated the above method of verification using
sample circuits like flip-flops and counters and all the
time, the results were satisfactory.

5. CONCLUSIONS AND FUTURE WORK

We have presented an easy way to convert a digital
electronic circuit to a transition system and then to verify
their properties. The method uses the BDD based symbolic
model checker of SAL. The method can verify almost any
feature expressable in LTL.

As the future work, we would like to create a system that
can automatically convert digital systems to the transition
system based model. We need to identify methods to
reduce

the number of states in the system. We would also like to
extend the work to some complex electronic circuits and
see if there is any upper bound on the number of gates and
inputs.

REFERENCES

[1] C. Bayrak, M. Sahinoglu, T. Cummings, High assurance
software testing in business and DoD, in:
Proceedings of the Fifth IEEE International
Symposium on High Assurance Systems
Engineering (HASE 2000), 2000, pp. 207 - 211.

[2] G. Le Lann, An analysis of the Ariane 5 flight 501
failure-a system engineering perspective in:
Proceedings of International Conference and
Workshop on Engineering of Computer-Based
Systems, 1997, pp. 339 - 346.

[3] Dov M. Gabbay, A. Kurucz, F. Wolter, M.
Zakharyaschev, Many-dimensional modal logics:
theory and applications, El- sevier, p. 46.

[4] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, Adding regular
expressions to graph reachability and pattern
queries, in: Proceedings of the Twenty Seventh
International Conference on data Engineering
(ICDE), 2011, pp. 39 - 50.

[5] SAL: Tutorial, http://sal.csl.sri.com/doc/salenv
tutorial.pdf

