
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1423

Study on sorting algorithm and position determining sort

S. Harihara Sudhan1, C. Kalaiarasan2

1Student of B.E. Computer Science and Engineering, SNS College of Engineering
2Dean of Computer Science, SNS College of Engineering

--***---
Abstract- Sorting is an important task in many
computer applications. Efficiency is a crucial factor when
the amount of data is large. Memory allocation in
operating systems, networks and databases use sorting
concept. There are many ways to implementing different
sorting algorithms. Though the real challenge lies in the
implementation and the theoretical concept is of mere
importance. The new sorting algorithm proposed uses the
divide and conquer technique to increase the time
efficiency. A new sorting algorithm has been put forth and
its advantages and disadvantages have been discussed.
The proposed algorithm is compared with other existing
sorting algorithms. Finally, the possible implementations
of this algorithm have been implemented.

Key Words- sorting, time complexity, space complexity,
quick sort, selection sort, algorithm, quasilinear

1. Introduction

1.1 Concept of sorting

Sorting is considered as an initial task before many
processes like searching, data management and database
system [1]. Sorting is a process of rearrangement a list of
elements to the correct order since handling the
elements in a certain order is more efficient than
handling randomizes elements [2]. A sorting algorithm is
a method that can be used to place a list of unordered
items into an ordered sequence which minimizes search
time. The sequence of ordering is determined by a key.
Various sorting algorithms exist, and they differ in terms
of their efficiency and performance. An important key to
algorithm design is to use sorting as a basic building
block, because once a set of items is sorted, many other
problems become easy. So, almost all computer based
solutions use any one of the sorting methods.

Many interesting and good sorting algorithms
have been proposed. Every algorithm has its own
advantages and disadvantages. For example, the
selection sort has a poor efficiency when dealing with
huge lists. In contrast, the quick sort performs well for
large amount of data. The performance of a sorting
algorithm depends on the data and the machine used for
sorting, which is called as order of sorting algorithm.

The common operation performed in a sorting
algorithm is comparison and assignment. Selection of

suitable sorting algorithm depends on the input data,
available main memory, extent to which the data has
been sorted and disk space. In order to calculate the
performance of an algorithm the execution time and
space required for the successful completion of the
algorithm are considered. Since sorting algorithms are
common in computer science, some of its context
contributes to a variety of core algorithm concepts.

1.2 Classification based on efficiency

Sorting algorithms can be classified into three basic
groups based on their sorting efficiencies. Some of these
groups and representative algorithms are:

a. Linear time- An algorithm takes linear time if
its complexity is O(n). The runtime increases
linearly with size of the input data. Linear time
is the best possible time complexity in situations
where the algorithm has to sequentially read its
entire input. Sorting algorithms such as Bucket
sort, Flash sort, and Radix sort run in linear
time. Selection problem can be solved in O(n) if
the array is sorted.

b. Polynomial time- An algorithm runs in
polynomial time if a polynomial expression in
the size of the input for the algorithms can
upper bounded its running time. Some examples
are Bubble, Selection and Insertion sort.

Strong and weak polynomial time

The algorithm runs in strongly polynomial time
if,

1. The number of operations in the
arithmetic model of computation is
bounded by a polynomial in the number
of integers in the input instance; and

2. The space used by the algorithm is
bounded by a polynomial in the size of
the input.

An algorithm which runs in polynomial time but
which is not strongly polynomial is said to run
in weakly polynomial time.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1424

c. Linearithmetic time- A linearithmetic time is a
special case of quasilinear where the exponent k
on logarithmic term is one. It is a function of n
log n. A line arithmetic term grows faster than a
linear term but slower than any polynomial
term of n with exponent greater than 1. Heap
sort and smooth sort are example. In many
cases, the n log n running time is simply the
result of performing a Θ(log n)
operation n times. Comparison sorts require at
least linearithmetic number of comparisons in
the worst case because log(n!) = Θ(n log n), by
Stirling’s [3] approximation. They also
frequently arise from the recurrence
relation T(n) = 2T(n/2) + O(n).

2. Literature Review

There are many sorting algorithms and it is not possible
to consider all of them. Hence only basic and the most
popular algorithms are reviewed.

2.1 Selection Sort

Selection sort is the simplest sorting technique. It has O
(n^2) time complexity, making it inefficient on large lists.
Although it has many comparisons, it does the least
amount of data moving. That means if your data has
small keys but large data area, then selection sorting may
be the quickest [4]. But this algorithm is not stable
because the relative order with the same value is not
maintained.

Disadvantages

1. The primary disadvantage of the selection sort is
its poor efficiency when dealing with a huge list
of items;

2. The selection sort requires n-squared number of
steps for sorting n elements.

2.2 Quick sort

In this sort an element called pivot is identified and that
element is fixed in its place by moving all the elements
less than that to its left and all the elements greater than
that to its right. Since it partitions the element sequence
into left, pivot and right it is referred as a sorting by
partitioning [5].

Disadvantages

1. The slightest disadvantage of quick sort is that
its worst case is similar to average performance
of bubble, insertion or selection sorts.

2.3 Merge sort

Merge sort is a divide and conquer algorithm. It divides
the list into two approximately equal sub lists then it
sorts the sub lists recursively [6]. Merge sort is a stable
sort and is more efficient at handling slow-to-access
sequential media.

Disadvantage

1. Requires extra space;
2. Requires more space than other sorts.

Some comparative study [7] [8] [9] [10] have been
carried out in this field and situations of better suitemate
for these algorithms (Table 1) are clearly notified.

Table-1

Comparison

Name of
the

algorithm

Average Time
Complexity

Stable
(or)
not Average

case
Worst
case

Selection
sort

O(n^2) O(n^2) Not
stable

Quick sort O(nlog2n) O(n^2) Not
stable

Merge sort O(nlog2n) O(nlog2n) Stable

3. Proposed technique

3.1 Description

The new algorithm could be viewed as an
extension of the selection sort. It uses the divide-and-
conquer strategy. An element is selected and positioned
in its exact place after getting compared with all the
other elements in the list by a swap operation. An
additional array stores the details about the locations
that have been already sorted. These details are
examined while considering a divide. A divide happens if
the largest or smallest element in the list has been fixed.
The least or highest element becomes a separate block.
These separate blocks will not be considered in further
iterations. Hence reducing the number of times the basic
operation is executed. No recursion is used in this
process.

3.2 Algorithm of the technique

Initialize low as 0

Initialize high as n

for i = 0 to n

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1425

 a[i] = 0

end for

while low < high-1 do // loop1

 Initialize location and l as low

 for j=low to high //loop2

 if ar[j] is less than ar[l] then

 location = location + 1

 end if

 end for

 while ar[l] is equal to ar[location] and
location is not equal to l do

 //loop3

if a[location] is equal to 1 then

 location = location + 1

 else

 a[location] = 1

 location = location + 1

 end if

end while

a[location] = 1

 temp = ar[l]

 ar[l] = ar[location]

 ar[location] = temp

 if a[low] is equal to 1 then

 while a[low] is equal to 1

 low = low + 1

 end while

 else if a[high] is equal to 1 then

 while a[high - 1] is equal to 1

 high = high - 1

 end while

 end if

end while

Example:

Figure 1: Position determining sort example

3.3 Factors analyzed

The analysis of algorithm defines that the estimation
of resources required for an algorithm to solve a given
problem. Sometimes the resources include memory, time
and communication bandwidth [11].

a. Additional space requirements

The technique requires another array (index
array) of the same size as that of the original
array. The list differentiates the sorted and
unsorted elements of the data. This algorithm
also requires two pointers (or locations) that
will point to the elements in the lowest and
highest index under consideration in the list.

b. Algorithm complexity

I) Run time complexity

There are two cases of execution –

The main (loop1) loop comparing low and high
iterates n-1 times and the number of iterations
of this loop is reduced when the number of
elements placed during a cycle increase which is
one, normally.

i) More than one element is placed

When one or more elements are present
in their exacted positions with its duplicates
present in the array, multiple elements are
placed at the same time. A loop (loop3) checks
for redundant elements and arranges them.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1426

ii) Only one element is placed

 When only one element is placed loop3 is not
executed. But in both the cases the loop (loop2)
that does the comparison task is executed. This
loop finds the appropriate position of the
element.

Worst case : O(n2)

Average case : O(n2)

Best case : O(n2)

II) Space complexity

The algorithm requires an additional array
whose size is one less than the size of the array
to be sorted. But unlike in merge sort the whole
n-1 locations are not required throughout the
operation. Once the lowest and highest elements
that are considered are in place the extra space
allocated can be freed immediately.

c. Behaviour on already or nearly sorted array

An already sorted or nearly sorted array does
not bring any change to the runtime or space
complexity of the technique. Each element is
considered to check for its appropriate position
in both the cases.

4. Conclusion

The performance of selection, quick and merge sort
has been evaluated. This was done using literature
material of relevant work. A new technique was
implemented that had the aim of exploiting the least
amount of data moving like in selection sort and it
was achieved. The problem of the proposed
technique is its inability to handle redundant data
without extra memory. The proposed technique was
implemented in C++ language and tested with
multiple inputs. Future efforts to minimize the
memory usage of the sorting technique will make it
more useful.

5. References

[1] D.E. Kunth, The Art of Computer

Programming: Vol. 3, Sorting and Searching,
2nd printing, Addison- Wesley, Reading, MA,
1975

[2] P. Adhikari, Review on Sorting Algorithms, “
A competitive study in two sorting
algorithms”, Mississippi state university,
2007

[3] Keith Conrad, Stirling’s formula. Available in
http://www.math.uconn.edu/~kconrad/blu
rbs/analysis/stirling.pdf.

[4] S. Jadoon , S.Solehria, S.Rehman and H.Jan.(
2011,FEB). "Design and Analysis of
Optimized Selection Sort Algorithm".11.
(1),pp. 16-21.
Available:http://www.ijens.org/IJECS%20V
ol%2011%20Issue%2001.html

[5] Khalid Suleiman Al-Kharabsheh, Review on
Sorting Algorithms a Comparative Study,
International Journal of Computer Science
and Security (IJCSS), Volume (7) : Issue (3) :
2013

[6] Katajainen, Jyrki; Pasanen, Tomi; Teuhola,
Jukka (1996, MAR). "Practical in-place
mergesort". Nordic Journal of Computing.
(3). pp. 27–40.

[7] A. Tridgell, Efficient Algorithms for Sorting
and Synchronization, Ph.D. Thesis, Dept. of
Computer Science, the Australian National
University, 1999.

[8] S. Jadoon, S. F. Solehria and M. Qayum,
(2011) “Optimized Selection Sort Algorithm
is faster than Insertion Sort Algorithm: a
Comparative Study” International Journal of
Electrical & Computer Sciences, IJECS-IJENS,
Vol: 11 No: 02.

[9] Y. Yang, P. Yu, Y. Gan, (2011) “Experimental
Study on the Five Sort Algorithms”,
International Conference on Mechanic
Automation and Control Engineering
(MACE).

[10] V. Estivill-Castro and D. Wood. A survey
of adaptive sorting algorithms. ACM
Computing Surveys, 24:441–476, 1992.

[11] Karunanathi .A, A Survey, Discussion
and comparison of sorting algorithms, Umea
University, June 2014

