
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1418

Double Precision Floating Point Multiplier Using Verilog

Rishabh Jain1, D. S. Gangwar2

1M.Tech Scholar, Dept. of VLSI DESIGN, F.O.T. Uttarakhand Technical University, Dehradun,India.
2Astt. Prof., Dept. of VLSI DESIGN, F.O.T. Uttarakhand Technical University, Dehradun,India.

---***---
Abstract - Every computer has a floating point processor or
a keen accelerator that satisfies the necessity of precision
utilizing full floating point arithmetic. Decimal numbers are
likewise called Floating Points in light of the fact that a single
number can be represented with at least one significant digit
relying upon the position of decimal point. In this paper we
describe an implementation of double precision floating point
multiplier IEEE 754 targeted for Xilinx Virtex-5 FPGA. The
Platform used here is Verilog. The multiply process used here is
pipelining, that gives the latency of eleven clock cycles.

1. INTRODUCTION

Floating-point representation includes encoding
containing three fundamental parts: mantissa, exponent and
sign. This involves a use of binary numeration and powers of
2 that outcomes infiguring floating point numbers
representation as single precision (32-bit) and double
precision (64-bit) floating point numbers. Both these
numbers are characterized by the IEEE 754 standard. As
indicated by the IEEE 754 standard, a single exactness
number has one sign bit, 8 exponent bits and 23 mantissa
bits where as a double precision number involves one sign
bit, 11 exponent bits and 52 mantissa bits. In the majority of
the applications we utilize 64-bit floating point to abstain
from losing precision in a long succession of operations
utilized as a part of the computation.

2. IEEE 754 FLOATING POINT STANDARD

The IEEE 754 floating-point standard is the most
broadly utilized standard for floating-point calculations. The
standard characterized an arrangement for floating-point
numbers, unique numbers, For example, the infinite’s and
NAN’s, an arrangement of floating-point operations, the
rounding modes and five special cases. IEEE 754 indicates
four organizations of portrayal: single precision (32-bit),
double-precision (64-bit), single augmented (≥ 43 bits) and
double expanded precisions (≥ 79 bits). Under this standard,
the floating point numbers have three segments: a sign, an
exponent and a mantissa. The mantissa has an understood
shrouded leading hidden bit and the rest are division bits.
The most utilized arrangements depicted by this standard
are the single accuracy and the double-precision floating-
point number configurations. In every cell the main number
shows the quantity of bits used to represent each part, and
the numbers in square brackets indicate bit positions saved
for every segment in the single-precision and double–
precision numbers.

Table -1: IEEE Floating Point Format

Format Sign Exponent Mantissa Bias

Single-
precision

1[31] 8[30-23] 23[22-0] 127

Double-
precision

1[64] 11[62-
52]

52[51-0] 1023

3. DOUBLE PRECISION FLOATING POINT
MULTIPLIER

The Floating Point Multiplier is implemented here
without using DSP slices. The inputs a and b are broken up as
sign (64th bit), exponent (63 – 52nd bits) and mantissa (51 – 0
bits). “Xor”ing the sign of a & b gives the final sign. Both
inputs are checked if any or both of them are ‘0’, infinity, or
Nan. This is done using two if–else statements. These
checking’s are necessary to handle exceptions. The implicit
‘1’ is concatenated with the mantissa of a & b and the 53
partial products are calculated. Each partial product is
calculated by ‘and’ ing mantissa of a with each mantissa bit
of b replicated 53 times. The sum of the exponents, final sign,
partial products and input exceptions are then registered in
the first pipeline stage. The partial products now need to be
added. Adjacent partial products are to be added with one
bit shift.The resultant adjacent partial products after the 2
bit shift addition are to be added with 4 bit shift and so on.

Figure 1: Illustration of Adjacent Partial Product Addition

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1419

To add in this manner the number of partial
products should be a power of 2. Since 53 is not a power of 2,
the partial products are divided as 32 + 16 + 4 + 1. Each
group is added in the above mentioned method and the
resultant 4 partial products are added with the required
offset. Among the 4 groups the fourth group will be the same
as the 53rd partial product as that group has only the final
partial product.

Figure 2: Dividing 53 Partial Products into 4 groups.

 While adding 2 adjacent partial products, for
example: p3 and p4 in Fig.2 the LSB of p3 remains the same.
Therefore while adding p3 and p4, the LSB of p3 (p3[0]) is
concatenated at the right of the sum of p3(52:1) and p4.

Group A has 32 terms, therefore will have 16
additions. Group B has 16 terms, therefore will have 8
additions. Group C has 4 terms, therefore will have 2
additions. Group D will have no addition. All additions take
place in parallel. The results are again registered. This is the
second pipelined stage. In each stage adjacent terms are
added with an increased amount of shift, with the shift equal
to 2 (stage number – ‘1’). Suppose it is the fourth stage then the
adjacent lower partial product is to be left shifted by 8
before adding. From Fig.11, p1111 = p111 + p222.

This can be broken down as p111[60:8] + p222 and
concatenated with p111[7:0] at the right. In this way number
of bit additions can be significantly reduced. After each stage
of addition the values are registered to reduce the
combinational path delay.

Though values of group D (53rd partial product),
final sign, sum of exponents, input exceptions are calculated
before the first pipeline stage, they also need to be

propagated through the pipeline as the values are required
at a further stage.

Since group A has the maximum number of terms, it
requires the most number of addition stages (5). Therefore
we will have four intermediate partial products only after “1
+ 5” (6) pipeline stages.

Figure 3: Final four intermediate partial products with
their offsets

 The four remaining intermediate partial products
with their offsets are shown in Fig.4 Grouping them and
adding as in previous cases will result in critical paths.
Therefore the data is partitioned horizontally as shown in
Fig.5

Figure 4: Final four intermediate partial products with
horizontal partitioning

The least significant 32 bits (0 – 31) of group A
requires no addition. Bits (32 – 47) of group A and bits (0 –
15) of group B are added together. The remaining 37 bits (48
– 84) of group A and bits (16 -68) of group B are added
together with carry from previous horizontal partition. The
three horizontal partitions are assigned as w,x, and y
respectively.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1420

Group C and group D are then added. The least
significant 4 bits of group C require no addition. Bits(4 – 40)
of group C and bits (0 – 36) of group D are added. The carry
is taken and added with the remaining 16 bits of group C and
group D. The result of group C and group D additions are
concatenated and assigned to z. w,x,y,z, and the data coming
through the pipeline are registered in the 7th pipeline stage.

Figure 5: Group AB and Group CD with Offset

Figure 6: Horizontal Partitioning of Y and Z

Leaving w and x as it is, y and z are again broken
into two parts as shown in Fig.6 and added. The results are
again registered in the 8th pipeline stage. Then the
multiplication result is got by concatenating the intermediate
results of w, x and (y + z). The MSB is then checked. If it is
zero it needs to be shifted left by one. Only one shift is
required because only normalized inputs are considered.
The 105thbit will always be one if the 106th bit is zero. The
results are again registered in the 9th pipeline stage.

Exceptions are considered in the next stage. If
exponent bits are all ones and mantissa bits are all zeros,
then the output is infinity. If exponent bits are all ones and
mantissa bits are not all zeros, then the output is not a
number (nan). Invalid is high if the inputs are invalid(this
was calculated initially).

4. Simulation and Synthesis

Essential to HDL design is the capacity to simulate HDL
programs. Simulation permits an HDL description of a design
(called a model) to pass design verification, a vital point of
reference that approves the design's intended function
(specification) against the code implementation in the HDL
description. It additionally allows architectural exploration.

Figure 7: Block Diagram of Floating Point Multiplier

The detailed Register Transistor Logic (RTL) of the double
precision floating point multiplier has been shown in figure
8.

In this RTL the number of slice registers used is only 10% of
the whole FPGA virtex 5 kit, that is; only 3129 slices register
are used out of 28800. Here the number of input output flip
flops used is 69. The number of used slices here is only 19% ,
that is; 1388. The number of used logics is 10%, that is;
3150.

Figure 8: RTL Diagram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1421

4.1 IMPLEMENTED RESULT

Table 2 Implementation result of Virtex5 (without
using DSP slices)

Logic
utilization

Used Available Utilization

Number of
Slices

3129 28,800 10%

Number of
Slice LUTs

4779 28,800 16%

Number of
used as Logic

3150 28,800 10%

Number of
Occupied Slices

1388 7,200 19%

Number of
fully used LUT-
FF pairs

3101 4,807 64%

Number of
Bounded IOBs

198 480 41%

IOB Flip Flops 69
Number of
BUFG

1 32 3%

4.2 Timing Summary

In this timing summary analysis the multiplier used is
without DSP Slices. The maximum synthesis frequency here
we get is 141.33MHz. The maximum clock frequency that
this Project using is 115.65 MHz. The design frequency here
is 108.69 MHz. The minimum period of delay is
3.488nanoseconds.The minimum input arrival time before
clock: 3.549nanoseconds. The minimum output required
time after clock: 2.775nanoseconds.

Figure 9: Simulation wave form(I) in Questasim 10.0b

5. CONCLUSIONS

In this project, the double precision floating point
multiplier in light of the IEEE-754 format is successfully is
effectively executed on FPGA. The modules are composed in
Verilog HDL to enhance usage on FPGA. In this
implementation they gained maximum frequency that of the
multiplier executed by means of pipelining algorithm. Since
the primary thought behind this implementation is to
increase the speed of the multiplier by reducing delay at
every stage using the optimal pipeline design, it gives the
advantage of less delay in comparison to other method. The
outcomes acquired utilizing the proposed calculation and
usage is better as far as speed as well as far as hardware
utilized. The maximum synthesis frequency here we get is
141.33MHz. The maximum clock frequency that this Project
using is 115.65 MHz. The design frequency here is 108.69
MHz. The minimum period of delay is 3.488nanoseconds and
the latency is of 11 clock cycle.

REFERENCES

[1] IEEE 754 Standard for floating-point arithmetic,
ANSI/IEEE Std 7541985 Vol ,Issue , 12 Aug 1985.

[2] B. Fagin and C. Renard, “Field Programmable Gate
Arrays and Floating Point Arithmetic,” IEEE
Transactions on VLSI, vol.2, no. 3, 365-367,1994.

[3] N. Shirazi , A. Walters, and P. Athanas, “ Quantitative
Analysis of Floating Point Arithemetic on FPGA
Based Custom Computing Machines,” Proceedings of
the IEEE Symposium on FPGAs for custom
computing machines(FCCM”96),pp.107-116,1996.

[4] A. Jaenicke and W. Luk,”Parameterized Floating-
Point Arithmetic on FPGAs”, Proc. Of IEEE
ICASSP,2001, vol. 2, pp. 897-900.

[5] M. Al- Ashrafy, A. Salem and W. Anis,“An Efficient
Implementation of Floating Point Multiplier ”
Electronics Communications and Photonics
Conference(SIECPC) 2011 Saudi International,
pp.15,2011.

[6] F.de Dinechin and B. Pasca. “Large multipliers with
fewer DSP blocks in Field Programmable Logic and
Applications”. IEEE, Aug. 2009.

[7] A. P. Ramesh, A. V. N. Tilak, A. M. Prasad ”An FPGA
Based High Speed IEEE-754 Double Precision
Floating Point Multiplier Using Verilog ” published
in IEEE 978-1-4673-5301-4/13/© 2013IEEE.

[8] B. Lee, N. Burgess. ”Parameterisable floating point
operations” Cardiff School of Engineering, Cardiff
University, Cardiff CF243TF U.K. 07803-7576-9/02
© 2002 IEEE.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1422

[9] J. G. Prokais and D. G. Manolakis (1996),”Digital
Signal Processing: Principles, Algorithms and
Applications”, Third Edition.

[10] D. H. Tabassum, K. S. Rao, ”Design of double
precision floating point multiplier using vedic
multiplication”, International Journal of Electrical
and Electronics Research, vol. 3, Issue 3,pp(162-
169), july-september 2015.

[11] ANSI/IEEE 754-1985 Standard for Binary Floating-
Point Arithmetic, 1985.

