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Abstract- Discovery of Frequent sequence mining is an 
essential data mining task with broad applications .The output 
of the algorithm is used in many other areas like market 
basket analysis, chemistry and bioinformatics. The frequent 
sequence mining is computationally high expensive. Further 
sequential patterns mining in a single dimension mining and 
multidimensional sequential patterns can give us more 
constructive and useful patterns. Due to the huge enhance in 
data volume and also fairly large search space, efficient 
solutions for finding patterns in multidimensional sequence 
data are currently very important. For this reason, developing 
a frequent sequence mining algorithm is necessary. Parallel 
algorithm follows the step by step approach and all 
participating processors or workers generate candidate 
sequence and count their estimate time and supports 
independently. 

Key Words:  Data mining, frequent sequence mining, 
parallel algorithms, static load balancing, probabilistic 
algorithms. 

1. INTRODUCTION  
 

Repeated pattern removal is an important data mining 
technique with a wide variety of mined patterns. The mined 
frequent patterns can be sets of items (item sets), sequences, 
graphs, trees, etc. Frequent sequence mining was first 
described in. The GSP algorithm presented in is the first to 
solve the problem of frequent sequence mining. As the 
repeated series removal is an extension of item set mining, 
the GSP algorithm is an extension of the Apriori algorithm. 
As a consequence of the slowness and memory consumption 
of algorithms described in other algorithms were proposed. 
These two algorithms use the so-called prefix-based 
equivalence classes (PBECs in short), i.e., represent the 
pattern as a string and partition the set of all patterns into 
disjoint sets using prefixes. There are two kinds of parallel 
computers: shared memory technology and distributed 
memory technology. Parallelizing on the shared memory 
technology is easier than parallelizing on distributed 
memory technology. Sampling technique that statically load-
balance the computation of parallel frequent item set mining 
process, are proposed   in these three papers, the so-called 
double sampling process and its three variants were 
proposed. 

There are other problems with static load-balancing 
the estimation of the running time in a PBEC is a non trivial 
task. The intuition behind this is that exact computation of 
number of frequent sequences in a PBEC is at least #P 
complete task. The hardness also comes from the fact that 
the amount of work necessary to process one sequence vary 
among sequences. The last problem, according to our 
experiments, is that each processor gets almost the whole 
database. A method of static load-balancing, called selective 
sampling is presented in parallel mining. The selective 
sampling process estimates the running time in each PBEC 
by removing some items from the database. 

In this paper we have Static Load Balancing of 
Parallel Mining Efficient Algorithm methods. Section 1 of 
Introduction Section 2 this paper deals with related work 
and Section 3 Proposed System 4 Algorithms 5 Results and 
Discussion Section 6 Conclusion and future work of the 
paper. 
 

2. RELATED WORK 
 

In the Static load balancing important things are view 
of load, assessment of load, constancy of different system, 
performance of system, interaction between the records , 
natural world of work to be transferred, selecting of data 
sets and many other ones to consider while developing such 
algorithm 

In this paper,[1] Sequential Pattern Mining from 
Multidimensional Sequence Data in Parallel finding patterns 
in multidimensional sequence data are nowadays very 
important present a multidimensional sequence model and a 
parallel algorithm follows the level-wise approach and all 
participating processors or workers generate candidate 
sequence and count their supports independently.  

In this paper, [2]Prefix Span Mining Sequential 
Patterns by Prefix Projected Pattern which discovers 
frequent sub sequences as patterns in a sequence database, 
is an important data mining problem with broad 
applications, including the analysis of customer purchase 
patterns or Web access patterns, the analysis of sequencing 
or time related processes such as scientific experiments, 
natural disasters, and disease treatments, the analysis of 
DNA sequences etc.  

In the paper,[3] Parallel Sequence Mining on Shared-
Memory Machines a parallel al-gorithm for fast discovery of 
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frequent sequences in large databases. pSPADE decomposes 
the original search space into smaller sufix based classes. 
Each class can be solved in main memory using efficient 
search techniques, and simple join operations. Further each 
class can be solved in-dependently on each processor 
requiring no synchronization 

In this paper, [4] Sequential mining patterns and 
algorithms analysis Sequential pattern is a set of item sets 
structured in sequence database which occurs sequentially 
with a specific order. A sequence database is a set of ordered 
elements or events, stored with or without a concrete notion 
of time The most used measures used to evaluate sequential 
patterns are the support and confidence. 

In this paper,[5] Model for Load Balancing on 
Processors in Parallel Mining of Frequent Item sets. This 
market basket data consists of transactions made by each 
customer. Each transaction contains items bought by the 
customer. The goal is to see if the occurrence of certain items 
in a transaction can be used to deduce occurrence of other 
items or in other words, to find associative relationships 
between items 

In this paper,[6] Probabilistic static load-balancing of 
parallel Mining of repeated series in this project we present 
a novel parallel algorithm for removal of repeated series 
based on a static load-balancing. The static load balancing is 
done by measuring the computational time they are slow 
and needs much more memory, compared to DFS algorithms. 

In this paper,[7] Parallel Mining of Closed Sequential 
Patterns to make sequential pat- tern mining practical for 
large data sets, the mining process must be efficient, scalable, 
and have a short response time. Moreover, since sequential 
pattern mining requires iterative scans of the sequence 
dataset with various data relationship and analysis 
operations, it is computationally intensive.  

 

3. PROPOSED SYSTEM  
 

Proposed method is a novel parallel method that 
statically load balance the computation. The set of all 
frequent sequences is first split into PBECs, the relative 
execution time of each PBEC is estimated and finally the 
PBECs algorithm is assigned to processors. The method 
estimates the processing time of one PBEC by the sequential 
Prefix span algorithm using sampling data sets. It is 
important to be aware that the running time of the parallel 
sequential algorithm scales with points 

 1) the database size 2) the number of frequent 
sequences 3) the number of embeddings of a frequent 
sequence in database transactions. 
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                Fig 1. Proposed System Architecture 

Static load balancing of the computation begins with 
partitioning the set of all frequent sequences into disjoint 
tasks. Because the PBECs are disjoint, they perfectly fit the 
needs of the algorithm. the total processing time of the 
sequential Prefix span algorithm. The processing time of 
each PBEC should be evaluated. The algorithm begins 
splitting the set of all frequent sequences into smaller pieces 
recursively using PBECs. The relative size of a PBEC is the 
estimate of the fraction of the total processing time of a 
PBEC. 

3.1  Module Description 

 1. Estimation of Support Module 

In this module, we can estimate whether a support 
of sequence is a subsequence of a transaction in a database 
or not. 

2. Estimation of Relative Size of PBEC Module 

The relative size of a PBEC can be used as the estimate of 
the relative processing time of the PBEC by a sequential 
algorithm. This estimate ignores some details of the 
sequential algorithm. The relative size of PBEC might be 
controllable size and smaller data set. 

3.2 Prefix span Algorithm: Step wise  considerations 
 

1) Create initial collection of frequent extensions: The 
algorithm starts adding items into a set of extensions S. 
Adding items into S is not straightforward because the 
collection of items requires 
 
2) Construction of the initial pseudo projected database: 
Create the initial pseudo projected transaction for e for each 
transaction. The projection adds new event containing single 
item e into S.  
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3) Projection using a sequence extension: 
 

Store the positions of data set into a new pseudo 
projected transaction that is stored in new pseudo database. 

 
4) The projection using an event extension: 
  

Search for the item e until the end of the event is found. 
 

4 Algorithms: 
 

Algorithm 1. Prefix span Sequential  
 

• PREFIXSPAN SEQUENTIAL (Database D, Integer min 
supp) 

1. Σ ← all frequent extensions from D  
2. for for all e Є Σ do 
3. Q ← <(e)> 
4. create projection D|q 
5. PREFIXSPAN-MAINLOOP(D,Q,D|Q,min supp) 
6. end for  

 

5 RESULTS AND DISCUSSION 
 

For the proposed system performance evaluation, we 
calculate frequency. We implement the scheme on Java 
framework with Intel Core i3 processor and 2 GB RAM. Here 
the graph in Fig-2 demonstrates the system performance. 
 

 
 
                        Fig.2 No of item sets 
 
The PBECs are created, scheduled, and executed on the 
processors. Because the PBECs are scheduled once, we talk 
about static load balance of the computation. The sequential 
algorithm runs for too long there is a need for parallel 
algorithms. There is a very natural opportunity to parallelize 
an arbitrary frequent sequence mining algorithm partition 
these to all frequent sequences using the PBECs. 

 
6 CONCLUSION AND FUTURE SCOPE 

 The frequent sequences and use this sample for estimating 
the relative processing time of the algorithm in the PBECs 
with evolutionary optimization technique The estimate of 
the relative processing time is in fact performed by 

estimating the computational complexity of processing 
various PBECs. The relative processing time is then used for 
partitioning and scheduling of the PBECs an algorithm for 
mining of frequent sequences using static load-balancing. 
The method creates a sample of frequent sequences the 
relative processing time is then used for partitioning and 
scheduling of the PBECs. The problem is that the estimated 
size of a PBEC is dependent on the construction of the PBEC 
(which should not happen). This dependency could be 
probably removed by using, for example, the bootstrap 
method. 

In future we have to implement the parallel 
algorithm to reduce the complexity of computational time 
and implement the result of frequent sequence mining using 
static load balancing. Additionally, we have to reduce the 
slowness and memory consumption of a process.  
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