
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1076

Static Load Balancing of Parallel Mining Efficient Algorithm with PBEC

in Frequent Sequences Dataset

Mr.Suraj Patil1, Prof: Parth Sagar2

1P. G Student, Department of Computer Engineering, RMD Sinhgad School of Engineering, Pune, India
2Assistant Professor, Department of Computer Engineering, RMD Sinhgad School of Engineering, Pune, India

---***--

Abstract- Discovery of Frequent sequence mining is an
essential data mining task with broad applications .The output
of the algorithm is used in many other areas like market
basket analysis, chemistry and bioinformatics. The frequent
sequence mining is computationally high expensive. Further
sequential patterns mining in a single dimension mining and
multidimensional sequential patterns can give us more
constructive and useful patterns. Due to the huge enhance in
data volume and also fairly large search space, efficient
solutions for finding patterns in multidimensional sequence
data are currently very important. For this reason, developing
a frequent sequence mining algorithm is necessary. Parallel
algorithm follows the step by step approach and all
participating processors or workers generate candidate
sequence and count their estimate time and supports
independently.

Key Words: Data mining, frequent sequence mining,
parallel algorithms, static load balancing, probabilistic
algorithms.

1. INTRODUCTION

Repeated pattern removal is an important data mining
technique with a wide variety of mined patterns. The mined
frequent patterns can be sets of items (item sets), sequences,
graphs, trees, etc. Frequent sequence mining was first
described in. The GSP algorithm presented in is the first to
solve the problem of frequent sequence mining. As the
repeated series removal is an extension of item set mining,
the GSP algorithm is an extension of the Apriori algorithm.
As a consequence of the slowness and memory consumption
of algorithms described in other algorithms were proposed.
These two algorithms use the so-called prefix-based
equivalence classes (PBECs in short), i.e., represent the
pattern as a string and partition the set of all patterns into
disjoint sets using prefixes. There are two kinds of parallel
computers: shared memory technology and distributed
memory technology. Parallelizing on the shared memory
technology is easier than parallelizing on distributed
memory technology. Sampling technique that statically load-
balance the computation of parallel frequent item set mining
process, are proposed in these three papers, the so-called
double sampling process and its three variants were
proposed.

There are other problems with static load-balancing
the estimation of the running time in a PBEC is a non trivial
task. The intuition behind this is that exact computation of
number of frequent sequences in a PBEC is at least #P
complete task. The hardness also comes from the fact that
the amount of work necessary to process one sequence vary
among sequences. The last problem, according to our
experiments, is that each processor gets almost the whole
database. A method of static load-balancing, called selective
sampling is presented in parallel mining. The selective
sampling process estimates the running time in each PBEC
by removing some items from the database.

In this paper we have Static Load Balancing of
Parallel Mining Efficient Algorithm methods. Section 1 of
Introduction Section 2 this paper deals with related work
and Section 3 Proposed System 4 Algorithms 5 Results and
Discussion Section 6 Conclusion and future work of the
paper.

2. RELATED WORK

In the Static load balancing important things are view
of load, assessment of load, constancy of different system,
performance of system, interaction between the records ,
natural world of work to be transferred, selecting of data
sets and many other ones to consider while developing such
algorithm

In this paper,[1] Sequential Pattern Mining from
Multidimensional Sequence Data in Parallel finding patterns
in multidimensional sequence data are nowadays very
important present a multidimensional sequence model and a
parallel algorithm follows the level-wise approach and all
participating processors or workers generate candidate
sequence and count their supports independently.

In this paper, [2]Prefix Span Mining Sequential
Patterns by Prefix Projected Pattern which discovers
frequent sub sequences as patterns in a sequence database,
is an important data mining problem with broad
applications, including the analysis of customer purchase
patterns or Web access patterns, the analysis of sequencing
or time related processes such as scientific experiments,
natural disasters, and disease treatments, the analysis of
DNA sequences etc.

In the paper,[3] Parallel Sequence Mining on Shared-
Memory Machines a parallel al-gorithm for fast discovery of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1077

frequent sequences in large databases. pSPADE decomposes
the original search space into smaller sufix based classes.
Each class can be solved in main memory using efficient
search techniques, and simple join operations. Further each
class can be solved in-dependently on each processor
requiring no synchronization

In this paper, [4] Sequential mining patterns and
algorithms analysis Sequential pattern is a set of item sets
structured in sequence database which occurs sequentially
with a specific order. A sequence database is a set of ordered
elements or events, stored with or without a concrete notion
of time The most used measures used to evaluate sequential
patterns are the support and confidence.

In this paper,[5] Model for Load Balancing on
Processors in Parallel Mining of Frequent Item sets. This
market basket data consists of transactions made by each
customer. Each transaction contains items bought by the
customer. The goal is to see if the occurrence of certain items
in a transaction can be used to deduce occurrence of other
items or in other words, to find associative relationships
between items

In this paper,[6] Probabilistic static load-balancing of
parallel Mining of repeated series in this project we present
a novel parallel algorithm for removal of repeated series
based on a static load-balancing. The static load balancing is
done by measuring the computational time they are slow
and needs much more memory, compared to DFS algorithms.

In this paper,[7] Parallel Mining of Closed Sequential
Patterns to make sequential pat- tern mining practical for
large data sets, the mining process must be efficient, scalable,
and have a short response time. Moreover, since sequential
pattern mining requires iterative scans of the sequence
dataset with various data relationship and analysis
operations, it is computationally intensive.

3. PROPOSED SYSTEM

Proposed method is a novel parallel method that
statically load balance the computation. The set of all
frequent sequences is first split into PBECs, the relative
execution time of each PBEC is estimated and finally the
PBECs algorithm is assigned to processors. The method
estimates the processing time of one PBEC by the sequential
Prefix span algorithm using sampling data sets. It is
important to be aware that the running time of the parallel
sequential algorithm scales with points

 1) the database size 2) the number of frequent
sequences 3) the number of embeddings of a frequent
sequence in database transactions.

Load Data base

Apllication

Data Set Splits

and Get to

Frequent item set

Get the Pattern

and sequences

count using prefix

span Algorithms

Maximum Memory get for

Data set

Calaluate

Execution

Time

Final Output with pattern

and minimum Support

Frequents Sequences

translation

Exection TIme

Display

Result

user

user

 Fig 1. Proposed System Architecture

Static load balancing of the computation begins with
partitioning the set of all frequent sequences into disjoint
tasks. Because the PBECs are disjoint, they perfectly fit the
needs of the algorithm. the total processing time of the
sequential Prefix span algorithm. The processing time of
each PBEC should be evaluated. The algorithm begins
splitting the set of all frequent sequences into smaller pieces
recursively using PBECs. The relative size of a PBEC is the
estimate of the fraction of the total processing time of a
PBEC.

3.1 Module Description

 1. Estimation of Support Module

In this module, we can estimate whether a support
of sequence is a subsequence of a transaction in a database
or not.

2. Estimation of Relative Size of PBEC Module

The relative size of a PBEC can be used as the estimate of
the relative processing time of the PBEC by a sequential
algorithm. This estimate ignores some details of the
sequential algorithm. The relative size of PBEC might be
controllable size and smaller data set.

3.2 Prefix span Algorithm: Step wise considerations

1) Create initial collection of frequent extensions: The
algorithm starts adding items into a set of extensions S.
Adding items into S is not straightforward because the
collection of items requires

2) Construction of the initial pseudo projected database:
Create the initial pseudo projected transaction for e for each
transaction. The projection adds new event containing single
item e into S.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1078

3) Projection using a sequence extension:

Store the positions of data set into a new pseudo
projected transaction that is stored in new pseudo database.

4) The projection using an event extension:

Search for the item e until the end of the event is found.

4 Algorithms:

Algorithm 1. Prefix span Sequential

• PREFIXSPAN SEQUENTIAL (Database D, Integer min
supp)

1. Σ ← all frequent extensions from D
2. for for all e Є Σ do
3. Q ← <(e)>
4. create projection D|q
5. PREFIXSPAN-MAINLOOP(D,Q,D|Q,min supp)
6. end for

5 RESULTS AND DISCUSSION

For the proposed system performance evaluation, we
calculate frequency. We implement the scheme on Java
framework with Intel Core i3 processor and 2 GB RAM. Here
the graph in Fig-2 demonstrates the system performance.

 Fig.2 No of item sets

The PBECs are created, scheduled, and executed on the
processors. Because the PBECs are scheduled once, we talk
about static load balance of the computation. The sequential
algorithm runs for too long there is a need for parallel
algorithms. There is a very natural opportunity to parallelize
an arbitrary frequent sequence mining algorithm partition
these to all frequent sequences using the PBECs.

6 CONCLUSION AND FUTURE SCOPE

 The frequent sequences and use this sample for estimating
the relative processing time of the algorithm in the PBECs
with evolutionary optimization technique The estimate of
the relative processing time is in fact performed by

estimating the computational complexity of processing
various PBECs. The relative processing time is then used for
partitioning and scheduling of the PBECs an algorithm for
mining of frequent sequences using static load-balancing.
The method creates a sample of frequent sequences the
relative processing time is then used for partitioning and
scheduling of the PBECs. The problem is that the estimated
size of a PBEC is dependent on the construction of the PBEC
(which should not happen). This dependency could be
probably removed by using, for example, the bootstrap
method.

In future we have to implement the parallel
algorithm to reduce the complexity of computational time
and implement the result of frequent sequence mining using
static load balancing. Additionally, we have to reduce the
slowness and memory consumption of a process.

ACKNOWLEDGEMENT

It is my privilege to acknowledge with deep sense of
gratitude to my guide Prof. Parth Sagar for her kind
cooperation, valuable suggestions and capable guidance and
timely help given to me in completion of my paper. I express
my gratitude to Prof. Vina M. Lomte, Head of Department,
RMDSSOE (Computer Dept.) for her constant
encouragement, suggestions, help and cooperation.

REFERENCES

[1] J. Ren, Y. Dong, and H. He, A parallel algorithm based on
prefix tree for sequence pattern mining, in Proc. 1st ACIS Int.
Symp. Cryptography Netw. Security, Data Mining Knowl.
Discovery, E-Commerce Appl. Embedded Syst., 2010, pp. 611

[2] R. Kessl and P. Tvrd, Toward more parallel frequent
itemset mining algorithms, in Proc. 19th IASTED Int. Conf.
Parallel Distrib. Comput. Syst., 2007, pp. 97103.

[3] T. Shintani and M. Kitsuregawa, Mining algorithms for
sequential patterns in parallel: Hash based approach, in Proc.
2nd Pacific-Asia Conf., Res. Develop. Knowl. Discovery Data
Mining, 1998, pp. 283294.

[4] R. Srikant and R. Agrawal, Mining sequential patterns
Generaliza- tions and performance improvements,in Proc.
5th Int. Conf. Extending Database Technol.: Adv. Database
Technol., 1996, pp. 117.

[5] R. Kessl and P. Tvrd, Probabilistic load balancing method
for parallel mining of all frequent itemsets, in Proc. 18th
IASTED Int. Conf. Parallel Distrib. Comput. Syst., 2006, pp.
578586.

[6] V. Guralnik, N. Garg, and G. Karypis, Parallel tree
projection algorithm for sequence mining,in Proc. 7th Int.
Euro-Par Conf. Euro-Par Parallel Process., 2001, pp. 310320.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1079

[7] S. Cong, J. Han, J. Hoeflinger, and D. Padua, A sampling-
based framework for parallel data mining, in Proc.10th ACM
SIGPLAN Symp. Principles Practice Parallel Program., 2005,
pp. 255265

[8] V. Guralnik and G. Karypis, Dynamic load balancing
algorithms for sequence mining, Univ. Minnesota,
Minneapolis, MN, US, Tech. Rep. TR 01-020, 2001.

[9] S. Cong, J. Han, J. Hoeflinger, and D. Padua, A sampling-
based framework for parallel data mining, in Proc.10th ACM
SIGPLAN Symp. Principles Practice Parallel Program., 2005,
pp. 255265.

[10] M. J. Zaki, Parallel sequence mining on shared-memory
machines, J. Parallel Distrib. Comput., vol. 61, no. 3, pp.
401426, 2001.

[11] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New
algorithms for fast discovery of association rules, in Proc. 3rd
Int. Conf. Knowl. Discovery Data Mining, 1997, pp. 283286.

[12] K.-M. Yu and J. Zhou, Parallel TID-based frequent
pattern mining algorithm on a PC cluster and grid computing
system, Expert Syst. Appl., vol. 37, no. 3, pp. 24862494, 2010.

[13] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New
algorithms for fast discovery of association rules, in Proc. 3rd
Int. Conf. Knowl. Discovery Data Mining, 1997, pp. 283286.

