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Abstract - In general the optimization techniques enable 
designers to find the best design for the structure under 
consideration. This Project Cost Optimization of RC Beams and 
Columns using Hybrid Genetic Algorithm (GA) technique is 
presented. The structure is designed economically without 
impairing the functional purposes of the structural elements is 
supposed to serve and not violating provisions given in IS456-
2000. Using the cross-sectional action effects as design 
variables, a Genetic Algorithm incorporated with a heuristic 
cost function is presented as an alternative to traditional cost 
functions for layout optimization of RC structures. Genetic 
Algorithm Program has been developed for the cost 
optimization of reinforced concrete beams and columns using 
MATLAB software. In order to validate the developed Hybrid 
GA for the proposed apartment building, conventional design 
of apartment building was analyzed using Staad Pro software 
and the results were compared. 
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1. INTRODUCTION  

Optimum design of structures has been the topic of many 
studies in the field of structural design. A designer’s goal is to 
develop an “optimal solution” for the structural design under 
consideration. An optimal solution normally implies the 
most economic structure without impairing the functional 
purposes the structure is supposed to serve. There are some 
characteristics of RC make design optimization of these 
structures distinctly different from other structures. The cost 
structures which of RC structures is influenced by several 
cost items including the cost of concrete and reinforcement. 
Therefore, in case of RC structures, the minimum weight 
design is not necessarily the same as the minimum cost 
design. In fact, for RC structures the optimum cost design is a 
compromise between the consumption of concrete, 
reinforcement which minimizes the total cost of the 
structure and satisfies the design requirements. In the design 
optimization of RC structures the cross-sectional dimensions 
of elements and detailing of reinforcement, e.g. size and 
number of steel bars, need to be determined. Consequently, 
the number of design parameters that need to be optimized 
depends on cracking and durability requirements of RC 
structures. These requirements increases the number of 
design constraints of the optimization problem of RC 
structures. 

The optimal design of three-dimensional reinforced 
concrete (RC) skeletal structures having members subjected 
to axial loads. The width, depth and area of longitudinal 
reinforcement of member sections are taken as the design 
variables. The optimality criteria (OC) method is applied to 
minimize the cost of the concrete, steel and formwork for the 
structure. 

2. OPTIMIZATION TECHNIQUES 

Optimization is a branch of mathematics which is 
concerned with obtaining the conditions that give the 
extreme value of function under given circumstances. An 
optimization problem can be mathematically stated as 
follows: 

Find X = (x1, x2, . . ., an) which minimizes if (X) I =1, 
2, . . ., no (2.1) 

Subject to 

g j (X) ≤ 0, j= 1, 2, . . ., ng(2.2) 

He(X) = 0, k = 1, 2, . . ., ne (2.3) 

xlm≤ xm≤ xum = 1, 2, . . ., ns (2.4) 

Where is the vector of n design variables, if(X) is an 
objective or merit function, gj(X) and he(X) are the inequality 
and the equality constraints, respectively. These constraints 
represent limitations on the behavior or performance of the 
system. Therefore, they are called behavioral or functional 
constraints. Side constraints (2.4) restrict the acceptable 
range of potential solutions of the problem based on non-
behavioral constraints. In this expression xlm, xm indium is 
the lower and upper limits on the design variable, 
respectively. In the above expressions no, nag, ne and ns are 
the number of objective functions, number of inequality, 
equality and side constraints, respectively. Depending on the 
specific choice of design variables, objective functions, and 
constraints, various types of optimization problems may 
exist. 

2.1.Introduction to Genetic Algorithm 

Genetic Algorithms were introduced by Holland in the 
1960s. With the aid of his colleagues and students, he 
developed these Algorithms during the 1970s in University 
of Michigan. He summarized the results of these researches 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

               Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |        Page 889 
 

in the book “Adaptation in natural and artificial systems” 
(Holland, 1975). Gases are numerical optimization 
techniques inspired by the natural evolution laws. A GA 
starts searching design space with a population of designs, 
which are initially created over the design space at random. 
In the basic GA, every individual of population (design) is 
described by a binary string (encoded form). GA uses four 
main operators, namely, selection, creation of the mating 
pool, crossover and mutation to direct the population of 
designs towards the optimum design. In the selection 
process, some designs of a population are selected by 
randomized methods for GA operations, for examples in 
creation of the mating pool; some good designs in the 
population are selected and copied to form a mating pool. 
The better (fitter) designs have a greater chance to be 
selected. Crossover allows the characteristics of the designs 
to be altered. In this process different digits of binary strings 
of each parent are transferred to their children (new designs 
produced by the crossover operation). Mutation is an 
occasional random change of the value of some randomly 
selected design variables. The mutation operation changes 
each bit of string from 0 to 1 or vice versa in a design’s 
binary code depending on the mutation probability. 
Mutation can be considered as a factor preventing from 
premature convergence. A GA uses a discrete set of design 
variables in the optimization process. However, by defining 
the number of decimal digits for representation of 
continuous variables or step size between the sequential 
values of design variables this method can be applied to 
continuous problems as well. 

 
               Fig.1 Flow Chart of Working Principle of GA 

2.1 GA Procedure 

GA is an iterative procedure that is motivated by the 
‘survival of the fittest’ Principle of Darwinian Theory of 
natural evolution (Darwin, 1859). The flowchart of a simple 

GA is given in Figure 2. A GA begins with a randomly created 
population of solutions that are represented by a coded 
string of fixed length (chromosome). The solutions are 
decoded and evaluated according to a criterion, called the 
fitness function. Every solution is assigned a fitness value 
according to the obtained value of the fitness function for 
that solution. To produce a new generation of solutions (new 

population). Some solutions are first selected according to 
their fitness values to enter a mating pool. The mating pool is 
then filled up by cloning the individuals (solutions), which 
have been entered in the mating pool, in proportion to their 
fitness values (creation of the mating pool). Creation of a 
new population is implemented by repeating the crossover 
and mutation operations. In the crossover stage, two 
individuals are initially selected as parents and then some 
segments of encoded strings of parents are swapped to 
create two children. For the mutation, some children are 
selected randomly, and then some alleles of these children 
are altered at random. The fitness value of individuals in the 
new generation is then evaluated. If the termination 
conditions are satisfied, the process is terminated. 
Otherwise, the iterative process is repeated for a new 
generation. 

 
                              Fig.2 Flow Chart of a GA 

2.2 Representation of GA 

          In GAs, design variables are usually encoded and 
represented in a string form. Two popular systems of coding 
are binary and real coding schemes. In the real number 
representation, each variable is represented as a 
conventional floating-point number. Binary and real coding 
‘differed mainly in the way of implementation of GA 
processes. In this project the basic binary coding method is 
used. 
 
2.3 Components of GA 

A typical genetic algorithm includes four processes: 
selection, creation of the mating pool, crossover and 
mutation. Depending on the problem and the selected 
representation scheme some of these processes can be 
applied. In the present research only the four main 
processes, i.e. Selection, creation of the mating pool, 
crossover and mutation have been used. 
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2.4 Method of Selection 

In different stages of a GA some individuals are selected by a 
randomized technique for performing certain GA processes 
on them. The method of selection of individuals has a 
significant influence on driving the search towards a 
promising area and finding a good solution within a short 
time. However, decreasing the diversity of the population 
may cause premature convergence to a local optimum. Many 
selection methods have been discussed in the literature, 
among them roulette wheel (also referred to as fitness-
proportional selection), Boltzmann selection, tournament 
selection, ranking selection (linear and non-linear) and 
steady state selection (Goldberg and Deb, 1991, Mitchell, 
1998, Coley, 1999). In this project, roulette wheel selection 
method has been implemented. In the fitness-proportional 
selection, the selection probability for each individualism 
proportional to its fitness value. The process of randomized 
selection of individuals can be simulated using a roulette 
wheel in which the width of each slot corresponds tithe 
fitness of a specific individual of the population. The wheel is 
then spun and the individual that come under the marker of 
the wheel is selected. Whitley (1989) pointed out two 
weaknesses of the fitness-proportional selection, which are 
stagnation and premature convergence of the search. When 
the relative difference between fitness value of the 
individuals is small the search process stagnates. On the 
other hand, when the relative difference between the fitness 
values of the individuals is large, the fittest individuals 
dominate the creation of the next generation. Consequently, 
the search prematurely converges to a solution. 
 
2.5 Creation of the mating pool 

Creation of the mating pool is a process in which 
some individuals in a population are selected according to 
their fitness values as parents to form a mating pool. In this 
process, the fitter individuals have a greater chance to be 
selected to enter the matting pool. All individuals in a 
current population may initially be considered to enter the 
matting pool. However, a criterion may be determined for 
the acceptance or rejection of certain individuals for 
reproduction. The average fitness of the current population 
cane considered as an acceptance limit for individuals to 
enter the mating pool. Alternatively, it is possible to select a 
percentage of the existing population in the order of 
decreasing magnitude of their fitness values that can enter 
the mating pool (percentage of survivors). The second 
strategy for selection of individuals is implemented in the GA 
developed in this project. 

 
2.6 Genetic Algorithm Operators 

The Population Size defines the number of initial 
(feasible and infeasible) solutions which are created at the 
beginning of the GA model work. These initial solutions are 
created taking into account the variables’ bounds which are 
stated in theca model. Limiting the population size to very 
little initial solutions will prevent the development of much 

better solutions since the interaction between the initial 
solutions are limited to a narrow range. Meanwhile 
increasing the population size enables the genetic algorithm 
to search more points and thereby obtain a better result, 
however, the larger the population size, the longer the 
genetic algorithm takes to compute each generation. So one 
can experiment with different settings for population size 
that return good results without taking a prohibitive amount 
of time to run. 

 Crossover enables the algorithm to extract the best 
genes from different individuals and recombine them into 
potentially superior children. Three types of crossover are 
found in the literature of the GA, two of them are considered 
in this study, namely: single point crossover and two point 
crossover. Mutation adds to the diversity of a population and 
thereby increases the likelihood that the algorithm will 
generate individuals with better fitness values. Different 
values of the mutation rate are considered in the models in 
order to examine the best mutation rate that will lead to the 
optimum solution. 
In this stage a percent of the total population size is chosen 
in order to perform the crossover and mutation on it. In our 
models, this percent is chosen randomly and varies between 
(0.3 and 0.8), these different values are examined in order to 
get the best solution. 

As GAs is an unconstrained optimization technique; 
it is necessary to transform the constrained design 
optimization problem to an unconstrained one. Several 
methods for handling constraints by GAs have been 
proposed Michalewics, (1995). Among them the rejecting 
strategy and methods based on a penalty approach can be 
named. In the rejecting strategy, any design that violates one 
or more constraints is not accepted for the involvement in 
the GA process to create a new population. In a penalty 
method, a Constrained Optimization problem is converted to 
an unconstrained problem by adding a penalty for each 
constraint violation to the objective function, the simple 
penalty function is a famous function of the penalty method. 
It converts the constrained nonlinear programming “NLP” 
problem to an unconstrained minimization problem by 
penalizing infeasible solutions: 

 
The parameters j R and k r are the penalty parameters for 
inequality and equality constraints, respectively. The success 
of this simple approach lays in the proper choice of these 
penalty parameters. One thumb rule of choosing the penalty 
parameters is that they must be so set that all penalty terms 
are of comparable values with themselves and with the 
objective function values. This is intuitive because if the 
penalty corresponding to a particular constraint is very large 
compared to that of other constraints, the search algorithm 
emphasizes solutions that do not violate the former 
constraint. This way other constraints get neglected and 
search process gets restricted in a particular way. In most 
cases, most search methods prematurely converge to a 
suboptimal feasible or infeasible solution. Since a proper 
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choice of penalty parameters are the key aspect of the 
working of such a scheme, most researchers experiment 
with different values of penalty parameter values and find a 
set of reasonable values. Deb, (1998) proposed a technique 
for handling constraint optimization problems for Genetic 
Algorithms. The proposed method belongs to both second 
and third categories of constraint handling methods 
described by Michalewicz and Schopenhauer (1996). 
Although a penalty term is added to the objective function to 
penalize infeasible solutions, the method differs from the 
way the penalty term is defined in conventional methods. He 
devised the following fitness function, where infeasible 
solutions are compared based on only their constraint 
violation. 

 
The parameter max f is the objective function value of the 
worst feasible solution in the population. Thus, the fitness of 
an infeasible solution not only depends on the amount of 
constraint violation, but also on the population of solutions 
at hand. However, the fitness of a feasible solution is always 
fixed and is equal to its objective function value. The two 
penalty functions discussed above are used in this research. 
      The fitness function is a criterion for the evaluation of the 
goodness of each individual in a population. Since the fitness 
function is a figure of merit, and some of the selection 
methods require a positive fitness value, it must therefore 
take positive values. In typical cost optimization problems, 
minimization of some cost function is carried out rather than 
maximization of utility or profit. 

 
3. OPTIMIZATION OF APARTMENT BUILDING  

USING HYBRID GENETIC ALGORITHM  

3.1 Optimization of RC Beams 

The chief task of the structural engineer is the design of 
structures. Design is the determination of the general shape 
and all specific dimensions of a particular structure so that it 
will perform the function for which it is created and will 
safely withstand the influences that will act on it through its 
useful life. These influences are primarily the loads and other 
forces to which it will be subjected. Beams are structural 
members carrying transverse loads that can cause bending 
moments, shear forces and in some cases torsion. Design of a 
beam starts with proportioning its sections to resist bending 
moment and choosing the required reinforcement. Once this 
is done, the chosen sections are checked and designed for 
shear and torsion. In order to limit deflections, the depth of 
the cross section is chosen to fulfill the IS456-2000 Code 
serviceability requirements. 
 
3.1.1 Design Parameters 

 The two main parameters in optimizing the apartment 
building is Objective Function and Constraint Function. 

3.1.2 Rectangular Beam Objective Function 

 The objective function for the simply supported 
reinforced concrete beam model was run to optimize the 
design of a rectangular cross section for this beam and 
loadings while satisfying the provisions of the IS456-2000 
Code. 
Function= (Cc*((bD + d’) – Ast )*L) +(Cs*Ast*L*ῥ) 
+(Cf*(((2*D+b)*L));  
 
3.1.3 Flanged Beam Objective Function 

    The objective function for the simply supported reinforced 
concrete beam model was run to optimize the design of a 
Flanged Beam cross section for this beam and loadings while 
satisfying the provisions of the IS456-2000 Code. 
Function= (Cc*((bD + d’) – Ast )*L) +(Cs*Ast*L*ῥ) 
+(Cf*(((2*D+b)*L));  
 
3.1.4 Doubly Reinforced Beam Objective Function 

Function=(Cc*(b*(d+35))-(Asc+(Ast))*L)+(Cs*(Asc) 
+(Ast)*L*ῥ*)+ (Cf**(2*(d)+ d’)+x(1))*L); 
 
3.1.5 Beam Optimization Example Problem 

A rectangular RC simply supported beam carrying L.L of  
12kN/m and D.L 6kN/m. Effective span of beam is 
6m.Assume M20 & Fe415 combination. Assume thickness of 
masonry wall 230mm. 
 
Table 1 Iteration Values of Beam Optimization   

Iteration F(x) 

0 2.272500e+003  

1 9.952500e+003  

2 1.214794e+004  

3 1.204933e+004 

4 1.136024e+004  

5 1.089663e+004  

6 9.624273e+003  

7 9.150973e+003  

8 9.078070e+003  

9 9.077771e+003  

10 9.076790e+003  

11 9.073803e+003  

12 9.073061e+003  

13 9.073062e+003  

14 9.073062e+003  
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Here we used hybrid genetic algorithm concepts, with 
heuristic approach to find the constraint and non-linear 
optimization and the optimized results satisfied all our 
constraints as per IS456-2000. The conventional designed 
results and optimized results were checked with limit state 
of collapse and serviceability  criteria. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Representation of Fitness Function for Beam  
 
This above graph shows the optimized value for the beam, 
and this graph is plotted for the fitness function iteration 
values. 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Representation of Constraint Function for Beam  
 
In Iteration process ,at first there will be a huge violation in 
satisfying the constraints, on further process of iteration the 
constraints are satisfied and at one point it reach the 
optimality characteristics. 
 
3.1.6 Tuning of GA operators 

Various values for each GA operator were tried bearing in 
mind the recommended Values of these operators. The 
operator was chosen and then the optimization models (the 
RC models) were run several times. Then, the best value for 
each operator is chosen (the best value is that which 
corresponds to the least cost among other values). The 
models were run again to check various values of another 
operator taking into account the best value of the preceding 
tuned operator. 
 
 

3.1.7 Number of Iterations 

The number of iterations was studied by keeping the values 
of other parameters fixed as follows 
The Population size = 100, the Mutation rate = 0.15, the 
Percent of population not selected for mating = 0.5. It is clear 
that by using a very little number of iterations (< 50), the 
optimizer kept the value of the cost far away from the 
optimum (minimum). Therefore, the obtained solution is not 
the best possible one. This means that using a very little 
number of iteration may allow little application of the basic 
operators of the GA on the population. Therefore, the model 
will not be able to explore wide range of developed 
populations (solutions) and the model may get stuck to a 
suboptimal or infeasible solution. It can be said that as the 
number of iteration increases, the solution will enhance, this 
is true until the number of iteration reaches the value of 200 
for both the single point and the two point crossover types, 
these results are the same when using both the simple and 
Deb penalty functions, beyond this value, any increase in the 
number of iteration will not significantly alter the best 
solution. The number of iterations of 200 is a moderate value 
that could result in the optimum solution in an acceptable 
time of run of the GA model for both the RC and PC models. It 
can also be seen that the type of crossover and the type of 
the penalty function has a small effect on the results of the 
GA model either on the trend of the graph or on the 
minimum cost obtained. 
 
3.1.8 Population Size 

The population size is studied by fixing the values of the 
other parameters  
The No of iteration = 200, the Mutation rate = 0.15, the 
Percent of population not selected for mating = 0.5, The 
results of tuning the population size parameter, it is clear 
that by using a lower number for the population size (<50),  
this will keep the value of the cost away from the optimum, 
thus the obtained solution is not the best possible, so limiting 
the population size to very little initial solutions will prevent 
the development of much better solutions. Meanwhile 
increasing the population size enables the genetic algorithm 
to search more points and thereby obtain a better result. The 
population size increases, the solution enhances, this is true 
until the population size reaches the value of 50 for both the 
single point crossover case and the two point crossover case, 
after that any increase in the population size will not 
improve the best solution significantly. While the solution 
reaches its best value at a population size of 100 for the case 
of two point crossover, it reaches its best value at a 
population size of 200 for the case of single point crossover. 
Figures shows that while the solution reaches its best value 
at a population size of 100 for the case of single point 
crossover, it reaches its best value at a population size of 200 
for the case of two point crossover. It can be said that the 
population size of 100 or 200 is a moderate value that could 
result in the optimum solution in an acceptable time of run 
of the GA model.  
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Table 3 Cost Comparison of Conventional and 
Optimized Design of Beam 

 

Beam 

Index 

Member 

No 

Moment 

value 

Length of 

beam 

Conventional Design 

B D Ast Cost 

Floor No kNm m mm mm 
Sq 

mm 
Rs 

Ground 

floor 
1 46.7 3.83 230 275 555 3718 

Ground 

floor 
2 46.7 3.23 230 275 555 3136 

Ground 

floor 
3 39.5 1.27 230 250 511 1147 

Ground 

floor 
4 39.5 3.83 230 250 511 3459 

Ground 

floor 
5 46.7 3.23 230 275 560 3135 

Ground 

floor 
6 11.6 1.27 230 135 277 699 

Ground 

floor 
7 39.5 1.83 230 250 511 1653 

Ground 

floor 
8 73.8 3.83 230 345 699 4542 

Ground 

floor 
9 46.7 1.83 230 275 556 1777 

Ground 

floor 
10 46.7 0.8 230 275 556 780 

Ground 

floor 
11 46.7 3.23 230 275 556 3135 

Ground 

floor 
12 65.7 3.83 230 325 660 4315 

Ground 

floor 
13 59.5 0.8 230 310 628 863 

Ground 

floor 
14 59.5 3.23 230 310 628 3485 

Ground 

floor 
15 59.5 3.23 230 310 628 3485 

Ground 

floor 
16 59.5 1.27 230 310 628 1367 

Ground 

floor 
17 39.5 1.83 230 250 511 1653 

Ground 

floor 
18 39.5 0.8 230 250 511 723 

Ground 

floor 
19 59.5 3.23 230 310 628 3485 

Ground 

floor 
20 59.5 3.83 230 310 628 4132 

Ground 

floor 
21 59.5 3.23 230 310 628 3485 

 

Beam Index Member No 
Moment 

value 

Length of 

beam 

Optimized Design 

Bo Bo Bo Bo 

Floor No kNm m mm mm mm mm 

Ground 

floor 
1 46.7 3.83 200 200 200 200 

Ground 

floor 
2 46.7 3.23 200 200 200 200 

Ground 

floor 
3 39.5 1.27 200 200 200 200 

Ground 

floor 
4 39.5 3.83 200 200 200 200 

Ground 

floor 
5 46.7 3.23 200 200 200 200 

Ground 

floor 
6 11.6 1.27 200 200 200 200 

Ground 

floor 
7 39.5 1.83 200 200 200 200 

Ground 

floor 
8 73.8 3.83 200 200 200 200 

Ground 

floor 
9 46.7 1.83 200 200 200 200 

Ground 

floor 
10 46.7 0.8 200 200 200 200 

Ground 

floor 
11 46.7 3.23 200 200 200 200 

Ground 

floor 
12 65.7 3.83 200 200 200 200 

Ground 

floor 
13 59.5 0.8 200 200 200 200 

Ground 

floor 
14 59.5 3.23 200 200 200 200 

Ground 

floor 
15 59.5 3.23 200 200 200 200 

Ground 

floor 
16 59.5 1.27 200 200 200 200 

Ground 

floor 
17 39.5 1.83 200 200 200 200 

Ground 

floor 
18 39.5 0.8 200 200 200 200 

Ground 

floor 
19 59.5 3.23 200 200 200 200 

Ground 

floor 
20 59.5 3.83 200 200 200 200 

Ground 

floor 
21 59.5 3.23 200 200 200 200 
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4. OPTIMIZATION OF RC COLUMNS 

A typical genetic algorithm includes four basic processes: 
selection, creation of the mating pool, crossover and 
mutation, these processes include seven basic operators, 
namely: Number of iterations, Population Size, Mutation 
rate, Percent of population not selected for mating, 
Crossover type, Selection function, Penalty function. In this 
chapter, a tuning process of the GA operators was carried 
out. As the operators of the GA are always problem 
dependent, so the values of these operators have to be tuned 
in order to get the best results for the model under 
consideration. Also, the effect of using different values of the 
compressive strength of concrete, loads, and yield strength 
of steel, the cost functions was studied. 
 
4.1 Objective Function 

  The objective function for the simply supported 
reinforced concrete column model was run to optimize the 
design of a column for the given loadingsby satisfying as per 
the provisions of IS456-2000. 
Function=  Cc*((b*D-Asc)+Cs*Asc + Cf*(2b+D);  
 
4.2 Column Optimization  Problem 

A Column subjected to an ultimate load of 1000kN. Consider 
concrete grade M20 and steel of grade Fe415. 
Pu=1000kN, Cc=3500/m3, Cs=60/Kg,Cf=320/m3,M20 and 
Fe415. 
 
Table 4 Iteration Values for Column Optimization Problem  
 

Iteration F(x) 
0 1.190250e+003 
1 5.456493e+003 
2 3.481959e+003 
3 3.096035e+003 
4 3.073395e+003 
5 3.073310e+003 
6 3.073310e+003 

Fig. 5 Graphical Depiction of Fitness Function for Column  

 

The above graph shows the optimized value for the beam, 
and this graph is plotted for the fitness function iteration 
values. 
 
 

Fig. 6 Graphical Depiction of Constraint Violation for 

Column 1 

 In Iteration process ,at first there will be a huge violation in 
satisfying the constraints, on further process of iteration the 
constraints are satisfied and at one point it reach the 
optimality characteristics. 

 
4.3 Hybrid Optimization process for Column 

We used hybrid genetic algorithm concepts, with heuristic 
approach to find the constraint and non-linear optimization. 
And the optimized results satisfied all our constraints as per 
IS456-2000. The conventional designed results and 
optimized results were checked with limit state of collapse 
and serviceability criteria. 

 
4.4 Tuning of GA operators 

Various values for each GA operator were tried bearing in 
mind the recommended values of these operators. The 
operator was chosen and then the optimization problem was 
run several times. Then, the best value for each operator is 
chosen (the best value is that which corresponds to the least 
cost among other values). The models were run again to 
check various values of another operator taking into account 
the best value of the preceding tuned operator. 

 4.5 Number of Iterations 

The number of iterations was studied by keeping the values 
of other parameters fixed as follows: 
The Population size = 100, the Mutation rate = 0.15, the 
Percent of population notselected for mating = 0.5. It is clear 
that by using a very little number of iterations (< 50), the 
optimizer kept the value of the cost far away from the 
optimum (minimum). Therefore, the obtained solution is not 
the best possible one. This means that using a very little 
number of iteration may allow little application of the basic 
operators of the GA on the population. Therefore, the model 
will not be able to explore wide range of developed 
populations (solutions) and the model may get stuck to a 
suboptimal or infeasible solution. 
 
4.6 Iteration Values 

 It can be said that as the number of iteration increases, the 
solution will enhance, this is true until the number of 
iteration reaches the value of 200 for both the single point 
and the two point crossover types, these results are the same  
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Table 4 Comparison of Conventional and Optimized 
Design of Columns 

 
 when using both the simple and Deb penalty functions,  
 
4.7 Population Size 
 
The population size is studied by fixing the values of the 
other parameters as 
Follows: 
 
The No of iteration = 200, the Mutation rate = 0.15, the 
Percent of population not selected for mating = 0.5, The 
results of tuning the population size parameter, it is clear 
that by using a lower number for the population size (<50), 
this will keep the value of the cost away from the optimum, 
thus the obtained solution is not the best possible, so limiting 
the population size to very little initial solutions will prevent 
the development of much better solutions. Meanwhile 
increasing the population size enables the genetic algorithm 

to search more points and thereby obtain a better result. The 
population size increases, the solution enhances, this is true 
until the population size reaches the value of 50 for both the 
single point crossover case and the two point crossover case, 
after that any increase in the population size will not 
improve the best solution significantly. While the solution 
reaches its best value at a population size of 100 for the case 
of two point crossover, it reaches its best value at a 
population size of 200 for the case of single point crossover. 
Figure shows that while the solution reaches its best value at 
a population size of 100 for the case of single point 
crossover, it reaches its best value at a population size of 200 
for the case of two point crossover. It can be said that the 
population size of 100 or 200 is a moderate value that could 
result in the optimum solution in an acceptable time of run 
of the GA model. Finally, the type of crossover and the type of 
the penalty function has a small effect on the results of the 
GA model either on the trend of the graph or on the 
minimum cost obtained.  

columns in ground floor = 56 Conventional  Design 

Gnd 

Floor 
column no load  kN b  mm d mm 

Asc sq 

mm 

Cost 

Rs 

G 1 94,147 494 230 230 452 2545 

G 2 95,146 599 230 230 652 2823 

G 3 96,127 481 230 230 452 2545 

G 4 
120 , 121 , 93 , 

148, 113 , 133 
320 230 230 452 2545 

G 5 128 , 119 358 230 230 452 2545 

G 6 129  ,  118 284 230 230 452 2545 

G 7 130 , 117 160 230 230 452 2545 

G 8 

97 , 109 , 136 , 

145 ,108 , 124 

,115,131 

518 230 230 452 2545 

G 9 101 , 142 336 230 230 452 2545 

G 10 105 , 139 386 230 230 452 2545 

G 11 132 , 114 532 230 230 452 2545 

G 12 
104 , 125 ,122 , 

116 
416 230 230 452 2545 

G 13 
98 , 110 , 135 , 

144 
751 230 230 1214 3606 

G 14 
102 , 106 , 138 , 

141 
546 230 230 458 2554 

G 15 
99 , 111 , 134 , 

143 
908 230 230 1799 4422 

G 16 
100 , 112, 123 , 

126 , 107 , 137 
700 230 230 1025 3343 

G 17 103 , 140 570 230 230 544 2672 

columns in ground floor = 56 Optimized Design 

Gnd 

Floor 
column no load  kN b  mm d mm 

Asc 

sq.mm 

Cost 

Rs 

G 1 94,147 494 221 221 388 2336 

G 2 95,146 599 243 242 471 2740 

G 3 96,127 481 218 218 400 2287 

G 4 
120 , 121 , 93 , 

148, 113 , 133 
320 200 200 400 2105 

G 5 128 , 119 358 200 200 400 2105 

G 6 129  ,  118 284 200 200 400 2105 

G 7 130 , 117 160 200 200 400 2105 

G 8 

97 , 109 , 136 , 

145 ,108 , 124 

,115,131 

518 226 226 408 2430 

G 9 101 , 142 336 230 230 452 2545 

G 10 105 , 139 386 230 230 452 2545 

G 11 132 , 114 532 229 229 419 2483 

G 12 
104 , 125 ,122 , 

116 
416 230 230 452 2545 

G 13 
98 , 110 , 135 , 

144 
751 272 272 591 3309 

G 14 
102 , 106 , 138 , 

141 
546 232 232 431 2541 

G 15 
99 , 111 , 134 , 

143 
908 299 299 716 3890 

G 16 
100 , 112, 123 , 

126 , 107 , 137 
700 262 262 551 3119 

G 17 103 , 140 570 237 237 449 2629 
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5. CONCLUSION 

This work aims to develop design optimization of 
Multistoried RC Framed Structure using Hybrid Genetic 
Algorithms as an optimization technique. This project work 
mainly highlights the following features. 

 GA Hybrid Optimization Coding was developed for 
the design optimization of reinforced concrete for 
beams and columns. 

 The Hybrid Genetic Algorithm Optimization gives 
the best optimized results for Constrained and Non-
Linear Optimization Problems. 

 The design Upper/Lower bounds should be set 
carefully to satisfy the aesthetic, architectural, 
practical and IS456 -2000 code limitation issues, 
but should not give rough values, since they affect 
the value of the optimum solution. 

 This project was carried out for finding optimum 
design of of Multistoried RC Framed Structure is of 
great value to practicing engineers. The optimized 
solution satisfies the provisions as per IS456 -2000 
and cost of the elements is minimized. 

 The optimized result of Multistoried RC Framed 
Structure saves 6.7% of cost while comparing with 
the conventional method of design. 
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