

"Analysis and Design of Proposed Girls Hostel in JIT Campus, Davanagere"

BHARATH H M^[1], SACHIN P D ^[2], SAHANA B S ^[3], SUJATHA M C ^[4], SUPRITA S PATIL ^[5], SUSHMA K V ^[6]

[1][2]Asst. Professor, Department of Civil Engineering, Jain Institute Technology, Davangere, Karnataka, India.
[3], [4], [5], [6]8th Sem, Civil Engineering, Jain Institute Technology, Davangere, Karnataka, India.

·····

Abstract - In today's world, from civil engineering point of view, it is very important that the structures are properly analyzed, evaluated and estimated before they are implemented in the field. The present study deals with analysis and design of G+3 hostel building. The study has been carried out for (G+3) building by considering gravity load. The analysis of building has been done by using finite element software such as ETABS.

The study involves planning of hostel building with a capacity of 200 students and area of the each room has been allotted according to the HMO standards. The building comprising of total 72 numbers of rooms. The model of building has been done in ETABS. The material properties of concrete and steel has assigned according to the standards. The analysis has been carried out in the software. The obtained results from the ETABS are taken separately. For the design, the spread sheets have been prepared according to the Bureau of Indian standard (IS 456-2000 and SP-16). The each structural element such as slabs, beams, columns and footings have been designed according to the code books. These results will also be compared with manual calculations of a sample beam and column of the same structure designed as per IS 456-2000 and SP16. According to the loads assigned from IS 875

1987(Part I and Part II) the structural members has found safe.

Key Words: Structural member, design, Analysis. 1. INTRODUCTION

Nowadays, due to the increase in population leads to the availability of horizontal coordination system (due to large area available per person) has been decreasing so that adoption of vertical co-ordination System (highrise building due to deficiency of area) is needed.

ETABS can also handle the largest and most complex building models, including a wide range of nonlinear behaviors, making it the tool of choice for structural engineers in the building industry. ETABS can be effectively used in the analysis and design of building structures which might consists of structural members like beams, columns, slabs, shear walls etc., With ETABS you can easily apply various construction materials to your structural members like concrete, structural steel, Reinforced Concrete etc. ETABS automatically generates the self-weight and the resultant gravity and lateral loads.

Codes recommended are IS 456-2000, SP 16, IS 875-1987 (Part I), IS 875-1987 (Part II).

1.2 OBJECTIVES

To provide a stay for students of Jain Institute
of Technology and to help new arrivals to

become acclimatised and adjusted to the new environment.

- To promote availability of safe and convenient location for students with care facility.
- To offer the right atmosphere for study and interchange of thoughts and ideas.
- Reduce the current accommodation crisis at the college.

2. METHODOLOGY

Accordingly a new hostel building is needed that can accommodate number of staying rooms, dining hall, kitchen, study hall/library, sports room(indoor games, aerobic room), electric room, visitors room, office room, dispensary, laundry and general store rooms.

Geometry of the Hostel building

The plan of the Hostel building is irregular. It has a story height of H = 3.2m where all stories are of the same height. The hostel building consist of three stories, it is four stories including ground floor. The Hostel building length is 66.23m and width is 50.23m so the area is $3326.73m^2$. The building consist of square columns with cross section (0.3 x 0.45)m, rectangular beams with cross- section (0.23 x 0.3)m and slab thickness of 150mm. The size of column is constant for all stories. In each storey, the size of the beam is constant.

Structural Design

Plan Details

Dimensions are in m and an 11 story building is modelled by ETAB Software and plan by AUTO CADD. The height of each story is kept as 3.2m in the structure with the total height of the structure as 11.1m and Hostel building length is 66.23m and width is 50.23m so the area is 3326.73m². Analysis and design of the structure is done by the software. Plan detail are shown in Table No.1

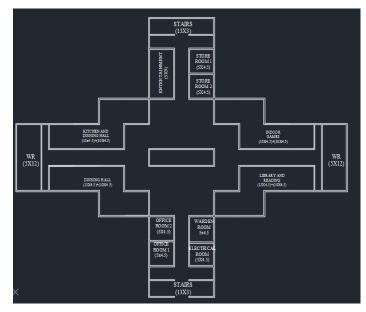


Fig. no.1: Plan of Ground Floor

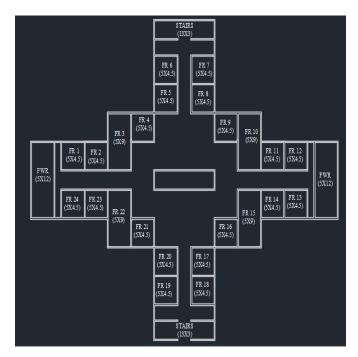
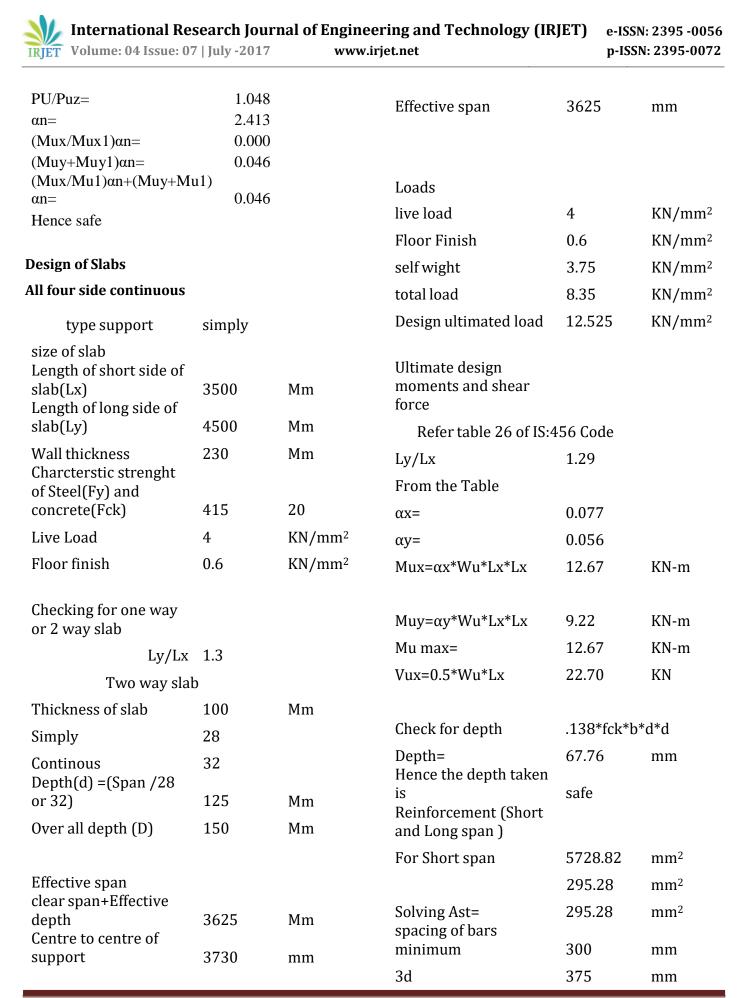


Fig.no.2: First, second and third floor plan

Table no 1:Building details

SI.			Area		
No.	ROOMS	SIZES(M)		No's	
			(M ²)		
1	Stairs	13X3	39	2	
2	Electrical Room	5X4.5	22.5	1	
3	Office Room	5X4.5	22.5	2	
-					
4	Store Room	5X4.5	22.5	2	
5	Library And Reading Hall	(15X4.5)+(10X4.5)	112.5	1	
6	Indoor Games Room	(15X4.5)+(10X4.5)	112.5	1	
7	Warden Room	5X4.5	22.5	1	
8	Kitchen And Dining Hall	(15X4.5)+(10X4.5)	112.5	2	
9	Wash Room	5X12	60	8	
10	Room Type A (First Floor)	5X4.5	22.5	20	
11	Room Type B (First Floor)	5X9	45	4	
	(First Floor) Room Type A				
12	(Second Floor)	5X4.5	22.5	20	
13	Room Type B (Second Floor)	5X9	45	4	
14	Entertainmen t Hall	5X9	45	1	

DESIGN DETAILS


Design of Isolated Footing		
Given Size of the column Longer side= Shorter side= Load by Column=	450 300 658.05	mm mm KN
Characterstic strenght of concrete=	25	N/mm ²
Characterstic strenght of Steel= Safe bearing capacity of	500	N/mm ²
soil= Factored safe bearing	140	KN/m
capacity of soil=	210	
Stress Fck= Fy=	25 500	N/mm ² N/mm ²
Size of footing Load of column= Self wieght of	658.05	KN
footing(10%)= Total load=Wu=	65.81 723.86	KN KN
Footing Area=	3.45	mm^2
a=b		
axXbx= x=	Area 0.51	mm
Short side of Footing= Long side of foooting=	1.52 2.27	2 3
Adopt rectangular footing=	2X3	
Factored soil pressure at base is Pu=	109.68	KN/m
By Pu<1.5 SBC,	Safe	
Factored Bending moment Cantilever Projection(Short side)= Cantilever Projection(long	1.28	mm
side)= Bending moment(Short	0.85 89.15	mm KN-m

© 2017, IRJET

International Research Journal of Engineering and Technology (IRJET) Volume: 04 Issue: 07 | July -2017 www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

side)=			Design of columns		
Bending moment(long	20. (2	T T) T	Design of column (C ₁)		
side)=	39.62	KN-m		300X45	
Depth of footing			Sizeof the column=	0	mm
From moment consideration			breadth=	300	mm
Mu=0.138fckbd2			depth=	450	mm
d=	160.75	mm	Effective length of the		
D=	210.75	mm	column=Lex=	3200	mm
From Shear consideration			Effective length of the		
VuL=250(1250-d)N	0.05		column=Ley=	3200	mm
Assuming <i>t</i> c=0.36N/mm2,Pt=			Factored Load(Pu)=	1850.23	KN
d=	512.30	mm	Factored Moment(Mux)=	2.435	KN-m
D=	562.30	mm	(Muy)=	25.47	KN-m
Depth of footing=	512.30	mm	Grade of concrete(Fck)=	25	N/mm ²
Reinforcement in footing			Grade of steel(Fy)=	500	N/mm ²
Area of steel for Longer					
direction=	7909.7	mm^2	Fck=	25	N/mm ²
	406.9	mm^2	Fy=	500	N/mm ²
	406.9	mm^2	d'=	40	mm
16mm dia provided at			-		
Spacing provided=	300	mm	Uniaxial MU=	29.424	KN-m
	1536.9	mm	Pu/Fckbd=	0.548	
	300.0	mm	MU/Fck bd2=	0.040	
Area of steel for Shorter direction=	7423.9	mm ²	MO/PCK bd2-	0.019	
direction-	179.9	mm^2	d'/D=	0.089	
	179.9	mm^2			
12 mm dia provided	179.9	mm	From Sp 16 Chart no 48	0.020	
atSpacing provided=	450	mm	P/Fck=	0.020	
	2561.5	mm	P=	0.500	
	450	mm			2
Ratio of long to short			Asc=	675	mm^2
side=β=	1.5				
Reinforcement in the		width of 2m	Provide no	5.966	
$(2/(\beta+1)Ast$	143.92			6.000	
Minimum Reinforcement =	0.12% of g	ross area	Actual area	678.857	mm^2
Winning Remotechent –	1349.5	mm^2			
	1349.5	mm^2	Actual p	0.503	
Check for Shear Stress			P/Fck	0.020	
Vu=	56.19	KN	From chart 48	0.060	
100Ast/bd	0.08		Mux1/Fxkbd2=	91.125	
ζc from code book	0.29		Muy1/Fckbd2=	91.125	
7	0.11	IZNI		134321.	
$\zeta v =$	0.11	KN	Ac=	1	mm^2
ζν<ζς	Safe		Puz=	1765.68	KN

Т

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395 -0056Volume: 04 Issue: 07 | July -2017www.irjet.netp-ISSN: 2395-0072

Spacing of 10mm dia bars	300	mm	effective span Materials	5000.0	mm
Dais	300	mm	grade of cement	Fck25	N/mm ²
			Steel grade	Fe500	N/mm ²
For long span			Stress		
effective depth	115	mm	Fck=	25.0	N/mm ²
•		mm	Fy=	500.0	N/mm ²
Ast	5310.50	mm ²	Es= Diameter of bar of	200000	
	231.67	mm ²	distribution and		
solving Ast=	231.67	mm ²	main(mm)=	8.0	12
spacing of bars			Cross sectional dimention		- / -
mimnmum	450	mm		span(m	L/d
	575	mm	Effective Death	m)	ratio 20
Spacing of 10mm dia			Effective Depth	<4000 >5000	20 10
bars	450	mm	L/d Ratio	>3000 10.0	10
			Clear cover	50.0	mm
			over all depth	270.0	mm
Check for Shear Stress			Effective span	240.0	mm
Considering the short span and unit width of			Ultimate moments and Sh	ear Force	
slab			Mu=.125*Wu*L*L	62.7	KN-m
	/1 1		Vu=.5*Wu*L	86.0	KN
ζv=	Vu/bd				
	0.18	N/mm ²	Tension Reinforcement	100+614	
	100Ast/b		Fe415	.138*fck*	
Pt=	d		Fe500	.134*fck*	
	0.24			.134*fck*	D'a'a
ζc=	0.35	N/mm ²	Mu.lim	56.2	
Hence the Shear stress	0.55	Ny IIIII			einforced
is	safe		Mu>Mu,lim	section	
			From IS 456-2000 pg no		Xu,max,
Check for deflection			70	Fy	d
(L/D)basic=	32			250.0	0.53
(L/D)actual=	29			415.0 500.0	0.48 0.46
Hence deflection is	safe		Xu,max/d	0.5	
	Sale		Xu,max	124.2	
Design of Dear			Fsc=	418.2	
Design of Beam			0.87*Fy	435.0	
Beam 1			Fsc<0.87Fy=	418.2	
depth	270.0	mm	A = -	((Mu-	
Breadth of beam	230.0	mm	Asc=		Fsc(d-d'))
Width of support	230.0	mm	Areas of the bar=	71.0 50.3	
			Ai eas oi uie bal =	20.2	

© 2017, IRJET

| Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal |

No of bars provide= Approximately	1.4 2.0	no. of bars of 16mm diamete
Provide Area of steel provide=	2.0 100.6	r mm ²
Ast2=	AscFsc/0.8 68.2	mm ²
Ast1= Total tension reinforcement=Ast=	0.36FckbX 7Fy 591.0 Ast1+As t2	mm ²
No of bars= Approximately Shear reinforcement	659.3 5.8 6.0	
ζv= Pt=	Vu/bd 1.4 100Ast/bc 1.1	KN/m l
Refer Table no 19 of IS 45-2000 ζc If ζv>ζc, Shear force is	0.7	KN/m
required or not required Vus=	provide [Vu-(ζcbd) 45.6] KN/m
Spacing should be given=	0.87AsvFy 213.8	•
maximum spacing=	0.75d 202.5	mm
Spacing should be given=	202.5	mm mm
Check for Deflection control (L/d)max=(L/d)basic*Kt* Kc*Kf (L/d)actual=	20*0.9*1* 21.0 20.8 safe	1

4. RESULTS AND DISCUSSIONS

From the ETABS the result of axial force, moment at X-X and moment at Y-Y has been taken. These results have grouped into 6 units naming with C on the basis of Axial load with ranging between 250KN difference. And taking maximum axial load within the range, for the corresponding maximum axial load, the moment at X-X and moment at Y-Y has been taken.

Column Results From ETABS

Axial Load Ranges (kN)	Colu mn	No.of Colu mn	Max imu ^x m	M (kN- m)	y M (kN-m)
500- 750(C ₁)	G14	8	658. 05	13.92	44.40
750- 1000 (C ₂)	C6	28	951. 91	43.93	40.48
1000- 1250(C ₃)	Н3	28	124 8.89	35.31	49.82
1250- 1500(C ₄)	F8	20	148 6.12	36.16	21.17
1500- 1750(C ₅)	D8	20	169 0.47	36.90	0.81
1750- 2000(C ₆)	F9	8	185 0.23	2.43	25.47

From the ETABS software we know the value of Minimum tension reinforcement (Pt) of the column in our model is i.e. 0.8% which is in the recommended range between 0.8 to 4%.

- For slab minimum tension reinforcement (Pt) is 0.09% which is less than 0.12% by recommended value.
- For beam minimum tension reinforcement (Pt) we got 0.27% which is in range between 0.17 to 4%.

3. CONCLUSIONS

- In this present work ETABS is used to analyze the R.C moment resting frame structure of G+3 considering the gravity loads. The following conclusion is drawn from present work.
- G+3 Hostel building plan has been drawn in Auto CAD software and designed for Beams, Columns, Footings, stairs and slabs. The dead load, live load are referred using IS 875-1987
- Part I and Part II. And designed according to the IS 456-2000 and SP16 by considering concrete grade of M25 and steel of HYSD bars Fe500 are used.
- By proposing our project on girls hostel building which meets the requirements of our JIT girls.
- The results obtained are safe from manual calculation i.e., in MS Excel as well as in software results.
- Manual design has been done for one of the different dimensions of the beam, column, stairs, footing and slab of the Hostel building as per the IS 456-2000 and SP 16.

REFERENCES

- Abhay Gulgeria, (2016) published as *"structural analysis of a multi storey building using ETABS for different plan configurations"* in the journal, International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 IJERTV3 IS051552 Vol. 3 Issue 5.
- Anjaneyulu B, Jaya Prakash K, (2016) published as *"Analysis and Design Of Flat Slab By Using Etabs Software"* in the journal, International Journal of Science Engineering and Advance Technology, IJSEAT, Vol. 4, Issue 2ISSN 2321-6905.
- Chintha Santhosh, Venkatesh Wadki, Madan Mohan S, Sreenatha Reddy S(2016) published as *"Analysis* and Design of Multistory Building with Grid Slab Using ETABS" in the journal, Research paper volume4; Issue -7; ISSN NO-2277-8179.
- Geeta Mehta, Bidhan Sharma and Anuj Kumar (2016) published as *"Optimization of Member Size and Materials for Multistoried RCC Buildings using ETABS"* in the journal, International Journal of Science and Technology, vol9(44), DOI:10.174851/ijst/2016/v9i441105254; ISSN:0974-6846; ISSN:0974-5645.
- 5. Mahamad Sabeer, Gouse Peera D, (August 2015) published as "comparison design result of RCC building using STAAD and ETAABS software" in the journal, International Journal of Innovative research in aduaval engineering(IJIRAE) ISSN:2349=2163;Issue 8; volume 2.
- 6. Mahesh S, Dr.Panduranga B Rao (2014) published as "Comparison of analysis and design of regular and irregular configuration of multi Story building in various seismic zones and various types of soils using ETABS and STAAD" in the journal, IOSR Journal of mechanical and civil engineering IOSR-JMCE;ISSN:2278-1684;p-ISSN-2320-334X-volume 11:Issue-6 ver1.

International Research Journal of Engineering and Technology (IRJET)

RJET Volume: 04 Issue: 07 | July -2017

www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

- Malikarjun M, Dr SuryaPrakash P V, (2016) published as *"Analysis and design of the Multistoried Residential building of (UNG-2+G+10) by using most economical column method"* in the journal , International journal of science engineering and advanced technology IJSEAT; volume 4, Issue2; Issn 2321-6905.
- Prashant P, Anshuman S, Pandey R K, Arpan, (2012), published as "Comparison of design results of a Structure designed using STAAD and ETABS Software" in the journal, International Journal of civil and structural engineering, volume 2, NO3, 2012.
- 9. Ramya D , Sai kumar A V S, (2015) published as "Comparative study on design and analysis of multistorey building (G+10) by STADD Pro and ETABS software." in the journal, International journal of engineering science and research technology ISSN:2277-9655.
- 10. Varalakshmi V, Shiva Kumar G, Sunil Sarma R (2012) published as - "Analysis and Design ofG+5 Residential Building", in the journal of mechanical and civil engineering (IOSR-JMCE), e-ISSN:2278-1684,p-ISSN:2320-334X,PP 73-77

BIOGRAPHIES

Bharath H M Assistance Professor Department of Civil Engineering Jain Institute of Technology Davanagere, Karnataka, India.

Sachin P D Assistance Professor Department of Civil Engineering Jain Institute of Technology Davanagere, Karnataka, India.

The set

Sahana B S UG Scholar Department of Civil Engineering Jain Institute of Technology Davanagere, Karnataka, India.

Sujatha M C UG Scholar Department of Civil Engineering Jain Institute of Technology Davanagere, Karnataka, India.

Suprita S Patil UG Scholar Department of Civil Engineering Jain Institute of Technology Davanagere, Karnataka, India.

Sushma K V UG Scholar Department of Civil Engineering Jain Institute of Technology Davanagere, Karnataka, India.