
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3009

Refactoring for High Cohesiveness in designing Robust Python Modules

J. Vamshi Vijay Krishna

Assistant Professor, Dept. of IT, CVR College of Engineering, Telangana, India

---***---
Abstract – A great software must satisfy the customer. With
good use-cases, the existing system/software can be changed
to accommodate the new requirements. Software that is not
well-designed falls apart at the first sign of change, but great
software can change easily. Objected Oriented Principles helps
in writing robust software that is well-designed, well-coded
and easy to maintain, reuse and extend. Robust programming
prevents abnormal termination or unexpected actions.
Striving for high cohesion is one of the key principles in
designing a robust software. Favoring Delegation,
Composition and Aggregation over Inheritance makes
software more robust. Refactoring in a context is sometimes
more favorable than delegation, composition and aggregation

Key Words: Robust Programming, Design Patterns, Python,
Object Oriented Programming, Cohesion, Refactoring

1. INTRODUCTION

Great software always does what the customer wants it to.
It is well-designed, well-coded and easy to maintain, reuse
and extend [1]. So even if customers think of new ways to use
the software, it doesn’t break or give them unexpected
results. The key ingredient of Robust Programming is that the
program doesn’t break or give unexpected results [2][3].
Object Oriented principles helps in designing software that is
more flexible and extensible. Some key Object Oriented
design principles are - encapsulate what varies; code to an
interface rather than an implementation; classes should be
open for extension and closed for modification; every object
should have a single responsibility and all the object’s
responsibility should be focused on carrying on that single
responsibility [1]. Single Responsibility Principle facilitates
high cohesion. Modules which are highly cohesive in nature
makes a great software.

Robust programming is a style of programming that
prevents abnormal termination or unexpected actions. It
requires code to handle bad (invalid or absurd) inputs in a
reasonable way. Robust programming is defensive and this
defensive nature protects the program not only from those
who use our application, but also from ourselves. A robust
program differs from a non-robust program by adherence to
the following four principles – paranoia, stupidity, dangerous
implements, and can’t happen principle [2][3].

Design patterns directly doesn’t go into code. They first go
into our brain and with a good working knowledge of
patterns, we can then start to apply them to our new designs,
and rework our old code which is fragile [4].

A cohesive module does one thing well and doesn’t try to
do or be something else. The higher the cohesion in software,

the more well-defined and related the responsibilities of each
individual module/class/object in application. Each module
has a very specific set of closely related actions it performs.
Single Responsibility Principle facilitates high cohesion which
in turn makes software more flexible, extensible and re-
usable.

Refactoring is the process of modifying the structure of
code without modifying code’s behavior [5][6]. Refactoring is
done to increase the cleanness, flexibility of code and usually
is related to a specific improvement in software design [7].

2. CASE STUDY

 It’s not always possible to design modules which are
highly cohesive in nature. For example, consider a scenario of
reading ‘N’ integer numbers from keyboard and then
displaying them on screen instead of writing to a file (to make
the example easily understandable). sumNIntegers.py script
in Fig–1 reads ‘N’ integers from keyboard and displays the
output on screen.

vamshi : ijret vamshi$ vim sumNIntegers.py

print '\nSum of "N" Integers\n'

size = int(input('\nEnter No.of Elements : '))

print('\n')
numbers = []
for index in range(size):
 numbers.append(int(input('Enter %d Element :
'%(index+1))))

sum = 0
for element in numbers:
 sum += element

print '\nSum of ', numbers, ' is : %d\n'%(sum)

Fig – 1: Python Script to calculate Sum of ‘N’ Integers

vamshi : ijret vamshi$ python fragileSumNIntegers.py

Sum of "N" Integers

Enter No.of Elements : 4

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3010

Enter 1 Element : 10
Enter 2 Element : 20
Enter 3 Element : 30
Enter 4 Element : 40

Sum of [10, 20, 30, 40] is : 100

vamshi : ijret vamshi$ python fragileSumNIntegers.py

Fig – 2: Robust Python Script to add ‘N’ Integers

Fig – 2 shows the output of fragileSumNIntegers.py
without typos and Fig – 3 shows the output of the script with
typos. Typos defeat the purpose of the application. The script
fragileSumNIntegers.py is non-robust in nature. It works well
with intended input, but mis-behaves with erroneous input

vamshi : ijret vamshi$python fragileSumNIntegers.py

Sum of "N" Integers

Enter No.of Elements : 4

Enter 1 Element : 10
Enter 2 Element : 20
Enter 3 Element : 30a
Traceback (most recent call last):
 File "sumNIntegers.py", line 7, in <module>
 numbers.append(int(input('\nEnter %d Element :
'%(index+1))))
 File "<string>", line 1
 30a
 ^
SyntaxError: unexpected EOF while parsing
vamshi : ijret vamshi$ python sumNIntegers.py

Sum of "N" Integers

Enter No.of Elements : 4a
Traceback (most recent call last):
 File "sumNIntegers.py", line 3, in <module>
 size = int(input('\nEnter No.of Elements : '))
 File "<string>", line 1
 4a
 ^
SyntaxError: unexpected EOF while parsing
vamshi : ijret vamshi$

Fig – 3: Output of Script in Fig – 1 with typos

 Fig – 4 shows improved version of sumNIntegers.py
which is robust in nature. RobustSumNIntegers.py in Fig – 4
handles typos as well as other form of errors like handling
float inputs when an integer is expected. The output of the
script is shown below in Fig – 5.

vamshi : ijret vamshi$ vim RobustSumNIntegers.py
def readInteger(prompt):

 while True:
 try:
 number = int(str(input(prompt)))

 except:
 print 'Invalid Input'

 else:
 return number

print '\nSum of "N" Integers\n'

size = readInteger('\nEnter No.of Elements : ')

print '\n'
numbers = []
for index in range(size):
 numbers.append(readInteger('Enter Element %d :
'%(index + 1)))

sum = 0
for element in numbers:
 sum += element

print '\nSum of ', numbers, ' is : %d\n'%(sum)

vamshi : ijret vamshi$

Fig – 4: Robust Python Script to add ‘N’ Integers

vamshi : ijret vamshi$ python RobustSumNIntegers.py

Sum of "N" Integers

Enter No.of Elements : 4a
Invalid Input

Enter No.of Elements : 4

Enter Element 1 : 10
Enter Element 2 : 20
Enter Element 3 : 30b
Invalid Input
Enter Element 3 : 30
Enter Element 4 : 40a
Invalid Input
Enter Element 4 : 40.4
Invalid Input
Enter Element 4 : 40

Sum of [10, 20, 30, 40] is 100

vamshi : ijret vamshi$

Fig – 5: Output of Script in Fig – 4 which handles errors

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3011

 RobustSumNIntegers.py in Fig – 4 is robust in nature but
fails when the user comes up with a new use-case. Apart from
being robust, the module should be reusable, extensible.
Modules can’t be reusable or extensible unless they are
cohesive in nature. The module is non-cohesive in nature as it
could not implement the Single Responsibility Principle and
makes it fragile with different use case.

3. PROPOSED STRATEGY

 A great software always does what the customer

wants it to do. It is well-designed, well-coded, flexible, re-

usable, extensible and maintainable. A good Object-Oriented

design always ensures that modules are cohesive in nature.

Robustness is induced into program in Fig – 4 by

emphasizing on High Cohesion and Refactoring principles.

vamshi : ijret vamshi$ vim scanner.py

class Scanner(object):

 @staticmethod
 def readInteger(prompt):

 while True:
 try:
 number = int(str(input(prompt)))

 except:
 print '\nInvalid Input.'

 else:
 return number

 @staticmethod
 def readFloat(prompt):

 while True:
 try:
 number = float(input(prompt))

 except:
 print('\nInvalid Input')

 else:
 return number

vamshi : ijret vamshi$

Fig – 6: Cohesive and Robust Scanner Class

We define cohesive and robust module scanner.py
in Fig – 6. The module takes the Single Responsibility of
reading values of different data types from keyboard in a
context.

vamshi : ijret vamshi$ vim sumNIntegers.py

from scanner import Scanner

print '\nSum of "N" Integers\n'

size = Scanner.readInteger('\nEnter No.of Elements : ')

print '\n'
numbers = []
for index in range(size):
 numbers.append(Scanner.readInteger('Enter Element
%d : '%(index + 1)))

sum = 0
for index in range(size):
 sum += numbers[index]

print '\nSum of ', numbers, ' is %d\n' %(sum)

Fig – 7: Sum of ‘N’ Integers using Robust Cohesive module

 Fig – 7 shows the usage of scanner.py
module in calculating the sum of ‘N’ Integers. Fig – 8 shows
the output of the script sumNIntegers.py which uses
scanner.py module which is robust and cohesive in nature.

The output shows that the scanner.py modules
handles typos as well as other forms of errors like handling a
float value when an integer is expected.

vamshi : ijret vamshi$ python sumNIntegers.py

Sum of "N" Integers

Enter No.of Elements : 4a
Invalid Input.

Enter No.of Elements : 4a
Invalid Input.

Enter No.of Elements : 4

Enter Element 1 : 10
Enter Element 2 : 20
Enter Element 3 : 30a
Invalid Input.
Enter Element 3 : 30.23
Invalid Input.
Enter Element 3 : 30
Enter Element 4 : 40

Sum of [10, 20, 30, 40] is 100

vamshi : ijret vamshi$

Fig – 8: Output of Script in Fig – 7

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3012

4. CONCLUSIONS

 As change is the only constant in software, we need to
use strategies which makes the development of software to
be more flexible, re-usable, extensible and maintainable.
Preferring delegation, composition and aggregation over
inheritance makes module highly cohesive in nature.
Refactoring re-usable modules is needed in certain contexts
to make modules highly cohesive in nature which is a key
factor in development of robust modules.

REFERENCES

[1] McLaughlin, Brett, Gary Pollice, and David West. Head

First Object-Oriented Analysis and Design: A Brain
Friendly Guide to OOA&D. " O'Reilly Media, Inc.", 2006

[2] Bishop, Matt, and Deborah Frincke. "Teaching robust
programming." IEEE Security & Privacy 2.2 (2004): 54-
57.

[3] Bishop, Matt, and Chip Elliott. "Robust programming by
example." IFIP World Conference on Information
Security Education. Springer Berlin Heidelberg, 2009.

[4] Freeman, Eric, et al. Head First Design Patterns: A Brain-
Friendly Guide. " O'Reilly Media, Inc.", 2004.

[5] Fowler, Martin, and Kent Beck. Refactoring: improving
the design of existing code. Addison-Wesley
Professional, 1999

[6] Polsani, Pithamber R. "Use and abuse of reusable
learning objects." Journal of Digital information 3.4
(2006).

[7] Bennedsen, Jens, and Michael E. Caspersen.
"Programming in context: a model-first approach to
CS1." ACM SIGCSE Bulletin. Vol. 36. No. 1. ACM, 2004.

